
Better Algorithms for Benign Bandits

Elad Hazan
IBM Almaden

650 Harry Rd, San Jose, CA 95120
ehazan@cs.princeton.edu

Satyen Kale
Microsoft Research

One Microsoft Way, Redmond, WA 98052
satyen.kale@microsoft.com

Abstract

The online multi-armed bandit problem and its general-
izations are repeated decision making problems, where
the goal is to select one of several possible decisions in
every round, and incur a cost associated with the deci-
sion, in such a way that the total cost incurred over all
iterations is close to the cost of the best fixed decision in
hindsight. The difference in these costs is known as the
regret of the algorithm. The term bandit refers to the
setting where one only obtains the cost of the decision
used in a given iteration and no other information.

Perhaps the most general form of this problem is
the non-stochastic bandit linear optimization problem,
where the set of decisions is a convex set in some
Euclidean space, and the cost functions are linear. Only
recently an efficient algorithm attaining Õ(

√
T ) regret

was discovered in this setting.
In this paper we propose a new algorithm for the

bandit linear optimization problem which obtains a
regret bound of Õ(

√
Q), where Q is the total variation

in the cost functions. This regret bound, previously
conjectured to hold in the full information case, shows
that it is possible to incur much less regret in a slowly
changing environment even in the bandit setting. Our
algorithm is efficient and applies several new ideas to
bandit optimization such as reservoir sampling.

1 Introduction

Consider a person who commutes to work every day.
Each morning, she has a choice of routes to her office.
She chooses one route every day based on her past
experience. When she reaches her office, she records
the time it took her on that route that day, and uses
this information to choose routes in the future. She
doesn’t obtain any information on the other routes
she could have chosen to work. She would like to
minimize her total time spent commuting in the long
run; however, knowing nothing of how traffic patterns
might change, she opts for the more pragmatic goal of
trying to minimize the total time spent commuting in
comparison with the time she would have spent had she

full knowledge of the future traffic patterns but had to
choose the same fixed route every day. This difference in
cost (using time as a metric of cost) measures how much
she regrets not knowing traffic patterns and avoiding the
hassle of choosing a new path every day.

This scenario, and many more like it, are modeled
by the multi-armed bandit problem and its generaliza-
tions. It can be succinctly described as follows: itera-
tively an online learner has to choose an action from a
set of n available actions. She then suffers a cost (or
receives a reward) corresponding to the action she took
and no other information as to the merit of other avail-
able actions. Her goal is to minimize her regret, which
is defined the difference between her total cost and the
total cost of the best single action knowing the costs of
all actions in advance.

Various models of the “unknown” cost functions
have been considered in the last half-a-century. Robbins
[17] pioneered the study of various stochastic cost
functions, followed by Hannan [10], Lai and Robbins
[13] and others. It is hard to do justice to the numerous
contributions and studies and we refer the reader to
the book of [6] for references. Auer et al [2] considered
an adversarial non-stochastic model of costs. In their
influential paper, [2] gave an efficient algorithm that
attains the optimal regret in terms of the number of
iterations, T , a bound of O(

√
nT ).1 The sublinear (in

T ) regret bound implies that on average, the algorithm’s
cost converges to that of the best fixed action in
hindsight.

This paper was followed by a long line of work [3, 14,
9, 7] which considered the more general case of bandit
online linear optimization over a convex domain. In
this problem, the learner has to choose a sequence of
points from the convex domain and obtains their cost
from an unknown linear cost function. The objective,
again, is to minimize the regret, i.e. the difference
between the total cost of the algorithm and that of

1Strictly speaking, here and henceforth we talk about expected
regret, as all algorithms that attain non-trivial guarantees must
use randomization.



the best fixed point in hindsight. This generality is
crucial to allow for efficient algorithms for problems
with a large decision space, such as online shortest path
problem considered at the beginning. This line of work
finally culminated in the work of Abernethy, Hazan and
Rakhlin [1], who obtained the first algorithm to give
Õ(poly(n)

√
T ) regret with polynomial running time.

Even though the Õ(
√

T ) dependence on T was a
great achievement, this regret bound is weak from the
point of view of real-world bandit scenarios. Rarely
would we encounter a case where the cost functions
are truly adversarial. Indeed, the first work on this
problem assumed a stochastic model of cost functions,
which is a very restrictive assumption in many cases.
One reasonable way to retain the appeal of worst-case
bounds while approximating the steady-state nature of
the stochastic setting is to consider the variation in the
cost vectors.

For example, our office commuter doesn’t expect
the traffic gods to conspire against her every day. She
might expect a certain predictability in traffic patterns.
Most days the traffic pattern is about the same, except
for some fluctuations depending on the day of the week,
time of the day, etc. Coming up with a stochastic
model for traffic patterns would be simply too onerous.
An algorithm that quickly learns the dominant pattern
of the traffic, and achieves regret bounded by the
(typically small) variability in day-to-day traffic, would
be much more desirable. Such regret bounds naturally
interpolate between the stochastic models of Robbins
and the worst case models of Auer et al.

In this paper we present the first such bandit
optimization algorithm in the worst-case adversarial
setting, with regret bounded by Õ(

√
Q) 2, where Q is

the total observed variation in observed costs, defined
as the sum of squared deviations of the cost vectors
from their mean. This regret degrades gracefully with
increasing Q, and in the worst case, we recover the
regret bound Õ(

√
T ) of [1]. Our algorithm is efficient,

running in polynomial time per iteration.
The conjecture that the regret of online learning

algorithms should be bounded in terms of the total
variation was put forth by Cesa-Bianchi, Mansour and
Stoltz [5] in the full information model (where the online
player is allowed to observe the costs of actions she did
not choose). This conjecture was recently resolved on
the affirmative in [11], in two important online learning
scenarios, viz. online linear optimization and expert
prediction. In addition, in [12], we give algorithms with

2Here and henceforth we use the standard Õ notation to hide
both constant and poly-logarithmic terms. Our precise bound for
the regret will include a log(T ) term also.

regret bounds of O(log(Q)) for the Universal Portfolio
Selection problem and its generalizations. In this paper,
we prove the surprising fact that such a regret bound
of Õ(

√
Q) is possible to obtain even when the only

information available to the player is the cost she
incurred (in particular, we may not even be able to
estimate Q accurately in this model).

To prove our result we need to overcome the fol-
lowing difficulty: all previous approaches for the non-
stochastic multi-armed bandit problem relied on the
main tool of “unbiased gradient estimator”, i.e. the use
of randomization to extrapolate the missing information
(cost function). The variation in these unbiased estima-
tors is unacceptably large even when the underlying cost
function sequence has little or no variation.

To overcome this problem we introduce two new
tools: first, we use historical costs to construct our gra-
dient estimators. Next, in order to construct these es-
timators, we need an accurate method of accumulating
historical data. For this we employ a method widely
used in the data streaming community known as “reser-
voir sampling”. This method allows us to maintain an
accurate “sketch” of history with very little overhead.

An additional difficulty which arises in the designing
the algorithm is the fact that a learning rate parameter
η needs to be set based on the total variation Q to obtain
the Õ(

√
Q) regret bound. Typically, in other scenarios

where square root regret bound in some parameter is
desired, a simple η-halving trick works, but requires the
algorithm to be able to compute the relevant parameter
after every iteration. However, as remarked earlier, even
estimating Q is non-trivial problem. We do manage
to bypass this problem by using a novel approach that
implicitly mimics the η-halving procedure.

2 Preliminaries

We consider the online linear optimization model in
which iteratively the online player chooses a point xt ∈
K, where K is a convex compact set called the decision
set. After her choice, an adversary supplies a linear cost
function ft, and the player incurs a cost of ft(xt). The
adversary does not have access to the random bits used
by the player, and in this extended abstract we assume
an oblivious adversary, see [8] for more details on various
models of adversaries.

With some abuse of notation, we use ft to also
denote the cost vector such that ft(x) = f T

t x. The only
information available to the player is the cost incurred,
i.e. the scalar ft(xt). Denote the total number of game
iterations by T . The standard game-theoretic measure



of performance is regret, defined as

RegretT =
T∑

t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

We assume that the cost functions are bounded, i.e.
‖ft‖ ≤ 1 and that for all x ∈ K, we have ‖x‖ ≤ 1. We
also assume that all standard basis vectors {e1, ..., en} ∈
K are in the decision set. This assumption is made only
for the sake of simplicity of exposition, in general, all
we need is a set of n linearly independent points in K
that are “well-conditioned”. We defer the details to the
full version of the paper.

We denote by QT the total quadratic variation in
cost functions, i.e.

QT :=
T∑

t=1

‖ft − µ‖2,

where µ = 1
T

∑T
t=1 ft is the mean of all cost functions.

For a positive definite matrix A we denote it’s
induced norm by ‖x‖A =

√
xTAx. We make use of the

following simple generalization of the Cauchy-Schwarz
inequality:

(2.1) xTy ≤ ‖x‖A · ‖y‖A−1 .

For symmetric matrices we denote by A ¹ B the
fact that the matrix B −A º 0 is positive semidefinite,
i.e. all its eigenvalues are non-negative.

2.1 Reservoir Sampling. A crucial ingredient in
our algorithm is a sampling procedure ubiquitously used
in streaming algorithms known as “reservoir sampling”
[18]. In a streaming problem the algorithm gets to see
a stream of data in one pass, and not allowed to re-
visit previous data. Suppose the stream consists of real
numbers f1, f2, . . . and our goal is to maintain random
samples from the data seen so far so that any time t, we
can compute an estimate of the mean, µt := 1

t

∑t
τ=1 ft.

The simple solution is to maintain a uniform sample S
from the stream. This is implemented by starting with
S = f1 and for every t, replacing S by ft with probability
1/t. At time t, we set our estimator for the mean µt to
be µ̃t = S. The following fact is standard (see [18]) and
easily proven inductively:

Lemma 1. For every t, the random variable S (and
therefore, the estimator µ̃t) is uniformly distributed on
the values fτ (i) for 1 ≤ τ ≤ t.

The following lemma follows immediately:

Lemma 2. E[µ̃t] = µt and VAR[µ̃t] = 1
t

∑t
τ=1(fτ −

µt)2 = 1
t Qt.

A simple extension of the above estimator to also
obtain low variance is to keep independent k such esti-
mators S1, S2, . . . , Sk and let µ̃t = 1

k

∑k
i=1 Si be their

average. These k estimators might have repetitions. In
order to reduce the variance further, it is better to keep
a random subset of size k without repetitions.

The standard reservoir sampling idea to accomplish
this is to start by selecting the first k data points. For
any iteration t > k, we sample the new data point with
probability k

t and then uniformly at random choosing
one of the previously chosen samples S1, S2, . . . , Sk to
replace with the new data point. Since we have k
samples, the variance of the average µ̃t = 1

k

∑k
i=1 Si

drops by a factor of at least k. The following lemma is
straightforward:

Lemma 3. E[µ̃t] = µt and VAR[µ̃t] ≤ 1
tkQt.

2.2 Self-concordant Functions and the Dikin el-
lipsoid. In this section we give a few definition and
properties of self-concordant barriers that we will cru-
cially need in the analysis. Our treatment of this
subject directly follows [1], and is less detailed. Self-
concordance in convex optimization is a beautiful and
deep topic, and we refer the reader to [16, 4] for a thor-
ough treatment on the subject.

We skip the definition of a self-concordant barrier
and function, see references above. For our purposes
it suffices to say that any n-dimensional closed convex
set admits an ϑ-self-concordant barrier (which may not
necessarily be efficiently computable), where the self-
concordance parameter is ϑ = O(n).

More concretely, the standard logarithmic barrier
for a half-space uTx ≤ b is given by R(x) = − log(b −
uTx), and is 1-self-concordant. For polytopes defined by
m halfspaces, the standard logarithmic barrier (which
is just the sum of all barriers for the defining half-
spaces) has the self-concordance parameter as ϑ = m. It
suffices for the unfamiliar reader to think only of these
examples.

For a given x ∈ K, define

‖h‖x :=
√

hT[∇2R(x)]h, and

‖h‖?
x :=

√
hT[∇2R(x)]−1h.

Here, ∇2R(x) denotes the Hessian of R at point x.
Define the Dikin ellipsoid of radius r centered at x

as the set

Wr(x) = {y ∈ K : ‖y − x‖x ≤ r}.

The following facts about the Dikin ellipsoid and
self concordant functions will be used in the sequel (we
refer to [15] for proofs):



1. W1(x) ⊆ K for any x ∈ K. This is crucial for most
of our sampling steps (the “ellipsoidal sampling”),
we sample from the Dikin ellipsoid centered at
xt. Since W1(xt) is contained in K, the sampling
procedure is legal.

2. Within the Dikin ellipsoid, that is for ‖h‖x < 1,
the Hessians of R are “almost constant”:

(1− ‖h‖x)2∇2R(x) ¹ ∇2R(x + h)
(2.2)

¹ (1− ‖h‖x)−2∇2R(x).

This property, together with the fact that the
convex set K is contained in the unit ball, implies
the following property relating the ‖ · ‖?

x norm to
the standard `2 norm ‖ · ‖, for any vector h,

(2.3) ‖h‖?
x ≤ ‖h‖.

3. For any δ > 0, we can define using the Minkowski
function (see [15]) a convex body Kδ ⊆ K with the
following properties. First, for any x ∈ K, there
exists a u ∈ Kδ such that ‖x−u‖ ≤ δ. In addition,
assuming that R is a ϑ-self-concordant barrier, we
have for all x ∈ K,u ∈ Kδ

R(u)−R(x) ≤ ϑ ln
1 + δ

δ
.

Of particular interest with be the parameter δ = 1
T ,

for which if u ∈ K1/T then

R(u)−R(xt) ≤ ϑ log(T + 1) ≤ 2ϑ log(T ).
(2.4)

3 The main theorem and algorithm

Main result. Before describing the algorithm, let us
state the main result of this paper formally.

Theorem 4. There exists an efficient algorithm for
the online linear optimization problem (Algorithm 1
below coupled with the halving procedure of Appendix
A), whose running time is O(n3) per iteration, and
whose expected regret is bounded as follows. Let QT

be the total variation of a cost function sequence in
an online linear optimization instance over a convex
set K which admits an efficiently computable ϑ-self-
concordant barrier. Then

E[RegretT ] = O
(
n
√

ϑQT log(T ) +
√

ϑn1.5 log2(T )
)

.

This theorem can be used with the well known log-
arithmic barrier to derive regret bounds for the online-
shortest-paths problem and other linearly constrained

problems, and of course applicable much more gener-
ally.

The multi-armed bandit problem. A case
of particular interest, which has been studied most
extensively, is the “basic” multi-armed bandit (MAB)
problem where in each iteration the learner pulls the
arm of one out of n slot machines and obtains an
associated reward, assumed to be in the range [0, 1].
The learner’s objective is to minimize his regret, i.e.
the difference between his cumulative reward and that
of the best fixed slot machine in hindsight.

This is a special case of the more general problem
considered earlier and corresponds to taking the convex
set K to be the n-dimensional simplex of probability
distributions over the arms. Since the n-dimensional
simplex admits a simple n-self-concordant barrier, an
immediate corollary of our main theorem is:

Corollary 5. There exists an efficient algorithm for
the multi-armed-bandit problem whose expected regret is
bounded by

E[RegretT ] = O
(
n2

√
Q log(T ) + n2 log2(T )

)
.

The additional factor of
√

n factor is because our results
assume that ‖ft‖ ≤ 1, and so we need to scale the
costs down by

√
n to apply our bounds. In comparison,

the best previously known bounds for this problem is
O(

√
nT log(nT )) in [2]. Even though our bound is

worse in the dependence on n, the dependence on the
parameter which grows, viz. T , is much better.

It seems that even stronger guarantees should be
attainable, i.e. instead of basing the regret bound on
the variation in all arms, only the variation with respect
to best arm may suffice. This issue is analogous to the
one in [11], where tighter bounds are derived for the
problem of prediction from expert advice, compared to
the bounds for general online linear optimization. We
intend to explore this issue in the full version of this
paper.

Overview of the algorithm. The underlying
scheme of our algorithm follows the recent approach
of [1], who use the Follow-The-Regularized-Leader
(FTRL) methodology with self-concordant barrier func-
tions as a regularization (see also exposition in [11]).
At the top level, at every iteration this algorithm sim-
ply chooses the point that would have minimized the
total cost so far, plus an additional regularization cost
function R(x), i.e. we predict with the point

xt = arg min
K

[
η

t−1∑
τ=1

f̃T

τ (x) +R(x)

]
,

where η is a learning rate parameter.



Here, f̃t is an estimator for the vector ft, which is
carefully constructed to have low variance. In the full-
information setting, when we can simply set f̃t = ft, such
an algorithm can be shown to achieve low regret (see
exposition in [1] and references therein). In the bandit
setting, a variety of “one-point-gradient-estimators” are
used [9, 1] which produce an unbiased estimator f̃t of ft
by evaluating ft at just one point.

In order to exploit the variation in the loss func-
tion, we modify the unbiased estimators of previous ap-
proaches by incorporating our experience with previous
loss functions as a “prior belief” on the upcoming loss
function. Essentially, we produce an unbiased estimator
of the difference between the past and the current loss
function.

This brings the issue of the past loss functions,
which are unfortunately also unknown. However, since
we had many opportunities to learn about the past and
it is an aggregate of many functions, our knowledge
about the past cumulative loss function is much better
than the knowledge of any one loss function in particu-
lar. We denote by µ̃t our estimator of 1

t

∑t
τ=1 fτ . The

straightforward way of maintaining this estimator would
be to average all previous estimators f̃t. However, this
estimator is far from being sufficiently accurate for our
purposes.

Instead, we use the reservoir sampling idea of
Section 2.1 to construct this µ̃t. For each coordinate i ∈
[n], we maintain a reservoir of size k, Si,1, Si,2, . . . , Si,k.
The estimator for µt(i) is then µ̃t(i) = 1

k

∑k
j=1 Si,j . Our

current approach is to use separate exploration steps in
order to construct µ̃t. While it is conceivable that there
are more efficient methods of integrating exploration
and exploitation, as done by the algorithm in the other
iterations, reservoir sampling turns out to be extremely
efficient and incur only a logarithmic penalty in regret.

The general scheme is given in Algorithm 1. It is
composed of exploration steps, called SimplexSample
steps, and exploration-exploitation steps, called Ellip-
soidSample steps. Note that we use the notation yt

for the actual point in K chosen by the algorithm in ei-
ther of these steps. In the EllipsoidSample step, yt

is chosen from a distribution with mean xt.
It remains to precisely state the SimplexSample

and EllipsoidSample procedures. The SimplexSam-
ple procedure is the simpler of the two. It essentially
performs reservoir sampling on all the coordinates with
a reservoir of size k. All the initial samples in the reser-
voir are initialized to 0. This is equivalent to assuming
that we have nk fictitious initial time periods indexed
by t = −(nk− 1),−(nk− 2), . . . , 0 where the cost func-
tions are ft = 0. This can be assumed without loss of
generality since it doesn’t affect the regret bound at all.

Algorithm 1 Bandit Online Linear Optimization
1: Input: η > 0, ϑ-self-concordant R, reservoir size

parameter k
2: Initialization: for all i ∈ [n], j ∈ [k], set Si,j = 0.

Set x1 = arg minx∈K [R(x)] and µ̃0 = 0.
3: for t = 1 to T do
4: Let r ← 1 with probability nk

nk+t (and 0 otherwise)
5: if r = 1 then
6: µ̃t ← SimplexSample.
7: f̃t ← 0.
8: else
9: µ̃t ← µ̃t−1.

10: f̃t ←EllipsoidSample(xt).
11: end if

12: Update xt+1 = arg minx∈K

[
η

t∑
τ=1

f̃ T

τx +R(x)

]

︸ ︷︷ ︸
Φt(x)

13: end for

Now, the SimplexSample procedure is invoked
with probability nk

nk+t for any time period t > 0.
Once invoked, it samples a coordinate it ∈ [n] with
the uniform distribution. The point yt chosen by the
algorithm is the corresponding vertex eit of the n-
dimensional simplex (which is assumed to be contained
inside of K) to obtain the coordinate ft(it) as the cost.

It then chooses one of the samples
Sit,1, Sit,2, . . . , Sit,k uniformly at random and re-
places it with the value ft(it), and updates µ̃t. This
exactly implements the reservoir sampling for each
coordinate. The algorithm is given in the following
figure.

Algorithm 2 SimplexSample

1: Choose it uniformly at random from {1, . . . , n} and
j uniformly at random from {1, . . . , k}.

2: Predict yt = eit , i.e. the it’th standard basis vector.
3: Observe the cost f T

t yt = ft(it).
4: Update the sample Sit,j = ft(it).
5: Update µ̃t(i) = 1

k

∑k
j=1 Si,j , for all i ∈ [n].

As for the EllipsoidSample procedure, it is a
modification of the sampling procedure of [1]. The
point yt chosen by the algorithm is uniformly at random
chosen from the endpoints of the principal axes of the
Dikin ellipsoid W1(xt) centered at xt. The analysis
of [1] already does the “hard work” of making certain
that the ellipsoidal sampling is unbiased and has low
variation with respect to the regularization. However,
to take advantage of the low variation in the data, we
incorporate the previous information in the form of µ̃.



This modification seems to be applicable more generally,
not only to the algorithm of [1]. However, plugged into
this recent algorithm we obtain the best possible regret
bounds and also an efficient algorithm.

Algorithm 3 EllipsoidSample(xt)
1: Let {v1, . . . ,vn} and {λ1, . . . , λn} be the set of

eigenvectors and eigenvalues of ∇2R(xt).
2: Choose it uniformly at random from {1, . . . , n} and

εt = ±1 with probability 1/2.
3: Predict yt = xt + εtλ

−1/2
it

vit
.

4: Observe the cost fT
t yt.

5: Define f̃t to be:

f̃t = µ̃t + g̃t

Where g̃t := n (f T
t yt − µ̃T

tyt) εtλ
1/2
it

vit
.

4 Analysis

In this section, we prove a slightly weaker regret bound,
in a setting where we know an upper bound Q on the
total variation QT . The main theorem proved here is
the following:

Theorem 6. Let Q be an estimated upper bound on
QT . Suppose that Algorithm 1 is run with η =

min
{√

log(T )
n2(Q+nk) ,

1
2(n+1)

}
and k = log(T ). Then, if

QT ≤ Q, the expected regret is bounded as follows:

E[RegretT ] = O
(
n
√

ϑQ log(T ) +
√

ϑn1.5 log2(T )
)

.

Although this bound requires an estimate of the total
variation, we show in the Appendix A how to remove
this dependence, thereby proving Theorem 4. In this
section we sketch the simpler proof of Theorem 6 and
give precise proofs of the main lemmas involved.

Proof. [Proof sketch] We first relate the expected regret
of Algorithm 1 which plays the points yt, for t = 1, 2, . . .
with the ft cost vectors to the expected regret of another
algorithm that plays the points xt with the f̃t cost
vectors. The proof of the following lemma appears in
Appendix B.

Lemma 7. For any u ∈ K,

E

[
T∑

t=1

f T

t (yt − u)

]
≤ E

[
T∑

t=1

f̃ T

t (xt − u)

]

+ O(n log2(T )).

Intuitively, this bound holds since in every Ellipsoid-
Sample step, the expectation of f̃t and xt (conditioned

on all previous randomization) are ft and xt respec-
tively, the expected costs for both algorithms is the same
in such rounds. In the SimplexSample steps, we pes-
simistically bound the difference in costs of the two algo-
rithms by |f T

t (xt−u)|, which is at most 2. The expected
number of such steps is O(nk log(T )) = O(n log2(T )),
which yields the extra additive term.

We therefore turn to bounding
∑T

t=1 f̃T
t (xt − u).

Using standard techniques and previous observations,
the regret can be re-written as follows (for proof see
Appendix B):

Lemma 8. For any sequence of cost functions
f̃1, . . . , f̃T ∈ Rn, the FTRL algorithm with a ϑ-self
concordant barrier R has the following regret guaran-
tee: for any u ∈ K, we have

T∑
t=1

f̃ T

t (xt − u) ≤
T∑

t=1

f̃T

t (xt − xt+1) +
2
η
ϑ log T.

We now turn to bounding the term f̃ T
t (xt − xt+1).

The following main lemma give such bounds, and forms
the main part of the theorem. We go into detail of its
proof in the next section, as it contains the main new
ideas.

Lemma 9. Let t be an EllipsoidSample step. Then
we have

f̃ T

t (xt − xt+1) ≤ 8ηn2‖ft − µt‖2 + 10ηn2‖µt − µ̃t‖2
+ 2µt(xt − xt+1).

A similar but much easier statement can be made for
SimplexSample steps. Trivially, since we set f̃t = 0 in
such steps, we have xt = xt+1. Thus, we have

f̃T

t (xt − xt+1) = 0 = 2µT

t(xt − xt+1).

Summing up over all time periods t we get

T∑
t=1

f̃ T

t (xt − xt+1) ≤ 8ηn2
T∑

t=1

‖ft − µt‖2(4.5)

+ 10ηn2
T∑

t=1

‖µt − µ̃t‖2 + 2
T∑

t=1

µt(xt − xt+1)

We bound each term of the inequality (4.5) above
separately. The first term can be easily bounded by
the total variation, even though it is the sum of squared
deviations from changing means. Essentially, the means
don’t change very much as time goes on. We omit the
proof from this extended abstract, but it is based on
Lemma 7 from [11].

Lemma 10.
∑T

t=1 ‖ft − µt‖2 ≤ QT + nk.



The second term, in expectation, is just the variance
of the estimators µ̃t of µt, which can be bounded in
terms of the size of the reservoir and the total variation
(see Lemma 3). The proof appears in Appendix B.

Lemma 11. E
[∑T

t=1 ‖µt − µ̃t‖2
]
≤ log(T )

k (QT + nk).

The third term can be bounded by the sum of
successive differences of the means, which, in turn, can
be bounded the logarithm of the total variation. The
proof is omitted from this extended abstract, but it is
based on Lemma 8 from [12].

Lemma 12.
∑T

t=1 µt(xt − xt+1) ≤ 2 log(QT + nk).

Plugging the bounds from Lemmas 10, 11, and 12
into (4.5), and using the value k = log(T ), we obtain the
following bound on the expected regret of the algorithm:
for any u ∈ K, we have

E

[
T∑

t=1

f T

t (yt − u)

]
≤ O

(
ηn2(QT + nk) + (ϑ/η) log(T )

+ log(QT + nk) + n log2(T )
)
.

Now, choosing η = min
{√

ϑ log(T )
n2(Q+nk) ,

1
n

}
, for some

upper bound Q ≥ QT , and we get the following regret
bound (using the value k = log(T )):

E

[
T∑

t=1

fT

t (yt − u)

]

≤ O
(
n
√

ϑQ log(T ) +
√

ϑn1.5 log2(T )
)

.

¥

4.1 Proof of Lemma 9. In order to prove Lemma 9,
we first develop some machinery to assist us. The
following lemma is a generalization of Lemma 6 in
[1] to the case in which we have both sampling and
ellipsoidal steps, and its proof is omitted from this
extended abstract.

Lemma 13. For any time period t, the next minimizer
xt+1 is “close” to xt:

xt+1 ∈ W 1
2
(xt).

Lemma 14. For any time period t, we have

‖xt − xt+1‖2xt
≤ 4ηf̃T

t (xt − xt+1).

Proof. Applying the Taylor series expansion to the
function Φt around the point xt, we get that for some

point zt on the line segment joining xt to xt+1, we have

Φt(xt) = Φt(xt+1) +∇Φt(xt+1)T(xt − xt+1)

+ (xt+1 − xt)>∇2Φt(zt)(xt+1 − xt)

= Φt(xt+1) + ‖xt+1 − xt‖2zt
,

because ∇Φt(xt+1) = 0 since xt+1 is the unique mini-
mizer of Φt in K. We also used the fact that ∇2Φt(zt) =
∇2R(zt). Thus, we have

‖xt+1 − xt‖2zt
= Φt(xt)− Φt(xt+1)
= Φt−1(xt)− Φt−1(xt+1)

+ ηfT

t (xt − xt+1)

≤ ηf̃ T

t (xt − xt+1),

since xt is the minimizer of Φt−1 in K. It remains
to show that 1

4‖xt+1 − xt‖2xt
≤ ‖xt+1 − xt‖2zt

. Thus
follows because zt ∈ W1/2(xt) since xt+1 ∈ W1/2(xt) by
Lemma 13, and hence, we have 1

4∇2R(xt) ¹ ∇2R(zt)
by (2.2). ¥

Proof. [Lemma 9]
First, we have

(f̃t − µt)T(xt − xt+1)

≤ ‖f̃t − µt‖?
xt
· ‖xt − xt+1‖xt (by (2.1))

≤ ‖f̃t − µt‖?
xt
·
√

4ηf̃T
t (xt − xt+1) (Lemma 14)

≤ 2η‖f̃t − µt‖?2
xt

+
1
2
f̃T

t (xt − xt+1).

The last inequality follows using the fact that ab ≤
1
2 (a2 + b2) for real numbers a, b. Simplifying, we get
that

f̃T

t (xt − xt+1)

≤ 4η‖f̃t − µt‖?2
xt

+ 2µT

t(xt − xt+1)

≤ 8η
(
‖f̃t − µ̃t‖?2

xt
+ ‖µt − µ̃t‖?2

xt

)
+ 2µT

t(xt − xt+1)

≤ 4η
(‖g̃t‖?2

xt
+ ‖µt − µ̃t‖2

)
+ 2µT

t(xt − xt+1).

The last inequality is because ‖ · ‖?
x ≤ ‖ · ‖ from (2.3).

Using the definition of g̃t from Algorithm 3, we get
that

‖g̃t‖?2
xt

= n2 ((ft − µ̃t)Tyt)
2
λit ·

(
vT

it
[∇2R(xt)]−1vit

)

= n2 ((ft − µ̃t)Tyt)
2

≤ n2‖ft − µ̃t‖2
≤ 2n2[‖ft − µt‖2 + ‖µt − µ̃t‖2].

The first inequality follows by applying Cauchy-Schwarz
and using the fact that ‖yt‖ ≤ 1. Plugging this bound



into the previous bound we conclude that

f̃ T

t (xt − xt+1) ≤ 8ηn2‖ft − µt‖2 + 10ηn2‖µt − µ̃t‖2
+ 2µT

t(xt − xt+1).

¥

5 Conclusions and Open Problems

In this paper, we gave the first bandit online linear
optimization algorithm whose regret is bounded by the
square-root of the total quadratic variation of the cost
vectors. These bounds naturally interpolate between
the worst-case and stochastic models of the problem.

This algorithm continues a line of work which aims
to prove variation-based regret bounds for any online
learning framework. So far, such bounds have been ob-
tained for four major online learning scenarios: expert
prediction, online linear optimization, portfolio selec-
tion (and exp-concave cost functions), and bandit on-
line linear optimization. Future work includes proving
such bounds for other online learning scenarios.

A specific open problem that remains from our
work is to remove the dependence on poly(log(T ))
in the regret bound, and replace it by poly(log(Q))
dependence. This seems to be quite a challenging
problem.

References

[1] J. Abernethy, E. Hazan, and A. Rakhlin. Competing
in the dark: An efficient algorithm for bandit linear
optimization. In COLT, 2008.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire. The nonstochastic multiarmed bandit prob-
lem. SIAM J. Comput., 32(1):48–77, 2003.

[3] B. Awerbuch and R. D. Kleinberg. Adaptive routing
with end-to-end feedback: distributed learning and
geometric approaches. In STOC, pages 45–53, 2004.

[4] A. Ben-Tal and A. Nemirovski. Lectures on Modern
Convex Optimization: Analysis, Algorithms, and En-
gineering Applications, volume 2 of MPS/SIAM Series
on Optimization. SIAM, Philadelphia, 2001.

[5] N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved
second-order bounds for prediction with expert advice.
Mach. Learn., 66(2-3):321–352, 2007.

[6] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction,
Learning, and Games. Cambridge University Press,
2006.

[7] V. Dani, T. Hayes, and S. Kakade. The price of bandit
information for online optimization. In NIPS, 2008.

[8] V. Dani and T. P. Hayes. Robbing the bandit: less
regret in online geometric optimization against an
adaptive adversary. In SODA, pages 937–943, 2006.

[9] A. D. Flaxman, A. T. Kalai, and H. B. McMahan. On-
line convex optimization in the bandit setting: gradient

descent without a gradient. In SODA, pages 385–394,
2005.

[10] J. Hannan. Approximation to bayes risk in repeated
play. In M. Dresher, A. W. Tucker, and P. Wolfe,
editors, Contributions to the Theory of Games, volume
III, pages 97–139, 1957.

[11] E. Hazan and S. Kale. Extracting certainty from
uncertainty: Regret bounded by variation in costs. In
COLT, 2008.

[12] E. Hazan and S. Kale. How to invest in calmer mar-
kets (without compromising universality). Manuscript,
2008.

[13] T. L. Lai and H. Robbins. Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathe-
matics.

[14] H. B. McMahan and A. Blum. Online geometric
optimization in the bandit setting against an adaptive
adversary. In COLT, pages 109–123, 2004.

[15] A.S. Nemirovskii. Interior point polynomial time
methods in convex programming, 2004. Lecture Notes.

[16] Y. E. Nesterov and A. S. Nemirovskii. Interior
Point Polynomial Algorithms in Convex Programming.
SIAM, Philadelphia, 1994.

[17] H. Robbins. Some aspects of the sequential design of
experiments. Bull. Amer. Math. Soc., 58(5):527–535,
1952.

[18] J. S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11(1):37–57, 1985.

A Tuning the learning rate: Proof of
Theorem 4

Theorem 6 requires a priori knowledge of a good bound
Q on the total quadratic variation QT . This may not
be possible in many situations. Typically, in online
learning scenarios where a regret bound of O(

√
AT )

for some quantity AT which grows with T is desired,
one first gives an online learning algorithm L(η) where
η ≤ 1 is a learning rate parameter which obtains a regret
bound of

RegretT ≤ ηAT + O(1/η).

Then, we can obtain a master online learning algorithm
whose regret grows like O(

√
AT ) as follows. We start

with η = 1, and run the learning algorithm L(η). Then,
the master algorithm tracks how AT grows with T . As
soon as AT quadruples, the algorithm resets η to half
its current value, and restarts with L(η). This simple
trick can be shown to obtain O(

√
AT ) regret.

Unfortunately, this trick doesn’t work in our case,
where AT = QT , since we cannot even compute QT

accurately in the bandit setting. For this reason,
obtaining a regret bound of Õ(

√
QT ) becomes quite

non-trivial. In this section, we give a method to obtain
such a regret bound. At its heart, we still make use
of the η-halving trick, but in a subtle way. We assume
that we know a good bound on log(T ) in advance. This



is not a serious restriction, it can be circumvented by
standard tricks, but we make this assumption in order
to simplify the exposition.

We design our master algorithm in the following
way. Let L(η) be Algorithm 1 with the given parameter
η and k = log(T ). We initialize η0 = 1/2(n + 1).
The master algorithm then runs in phases indexed by
i = 0, 1, 2, . . .. In phase i, the algorithm runs L(ηi)
where ηi = η0/2i. The decision to end a phase i and
start phase i + 1 is taken in the following manner: let
ti be first period of phase i, and let t be the current
period. We start phase i + 1 as soon as

t∑
τ=ti

f̃T

τ (xτ − xτ+1) ≥ 2
ηi

ϑ log(T )

(thus, phase i ends at time period t − 1, and we
don’t actually use the xt computed by L(ηi), since
L(ηi+1) starts at this point). Note that this sum can
be computed by the algorithm. Define Ii = {ti, ti +
1, . . . , ti+1 − 1}, i.e. the interval of time periods which
constitute phase i.

By Lemma 8, for any u ∈ K, we have

∑

t∈Ii

f̃ T

t (xt − u) ≤
∑

t∈Ii

f̃T

t (xt − xt+1) +
2
ηi

ϑ log(T )

≤ 4
ηi

ϑ log(T ).

Note that this inequality uses the fact that∑t
τ=ti

f̃ T
τ (xτ − xτ+1) is a monotonically increasing

function of t, since by Lemma 14, we have that
f̃ T
t (xt − xt+1) ≥ 0.

Let i? be the index of the final phase. Summing up
this bound over all phases, we have

T∑
t=1

f̃ T

t (xt − u) ≤
i?∑

i=0

4
ηi

ϑ log(T ) ≤ 8
ηi?

ϑ log(T ).

Then, using Lemma 7 we get that the expected regret
of this algorithm is bounded by

E

[
T∑

t=1

fT

t (yt − u)

]
≤ E[1/ηi? ] · 8ϑ log(T )

+ O(n log2(T )).(1.6)

We now need to bound E[1/ηi? ]. For this, consider the
phase i? − 1. For brevity, let J = Ii?−1 ∪{ti?}. For this
interval, we have (here, we assume that xti? is computed
by L(ηi?−1)):

∑

t∈J

f̃T

t (xt − xt+1) ≥ 2
ηi?−1

ϑ log(T ) =
1

ηi?

ϑ log(T ).

Applying the bound (4.5), and using the fact that
ηi?−1 = 2ηi? , we get

∑

t∈J

f̃T

t (xt − xt+1) ≤ 16ηi?n2
∑

t∈J

‖ft − µt‖2

+ 20ηi?n2
∑

t∈J

‖µt − µ̃t‖2

+ 2
∑

t∈J

µt(xt − xt+1).

Putting these together, and dividing by ηi? , we get

1
η2

i?

ϑ log(T ) ≤ 16n2
∑

t∈J

‖ft − µt‖2

+ 20n2
∑

t∈J

‖µt − µ̃t‖2

+
2

ηi?

∑

t∈J

µt(xt − xt+1).(1.7)

Lemmas 10 and 12 enable us to upper bound
∑

t∈J ‖ft−
µt‖2 ≤ QT + nk and

∑
t∈J µt(xt − xt+1) ≤ 2 log(QT +

nk). Now, we take the expectation on both sides of
the inequality over the randomness in phase i? − 1.
Denoting this expectation by Ei?−1, we have the bound

Ei?−1

[∑

t∈J

‖µt − µ̃t‖2
]
≤ log(T )

k
(QT + nk),

by Lemma 11. Plugging these bounds into (1.7), and
using k = log(T ), we get

1
η2

i?

ϑ log(T ) ≤ 36n2(QT + nk) +
4

ηi?

log(QT + nk).

Now, one of 36n2(QT + nk) or 4
ηi?

log(QT + nk) must
be at least 1

2η2
i?

ϑ log(T ). In the first case, we get the

bound 1
ηi?

≤ 10n
√

QT +nk
ϑ log(T ) . In the second case, we get

the bound 1
ηi?

≤ 8 log(QT +nk)
ϑ log(T ) . In either case, we can

bound

E[1/ηi? ] · 8ϑ log(T ) ≤ O
(
n
√

ϑ(QT + nk) log(T )
)

.

Plugging this into (1.6), and for k = log(T ), we get that
the expected regret is bounded by

E

[
T∑

t=1

f T

t (yt − u)

]

≤ O
(
n
√

ϑQT log(T ) +
√

ϑn1.5 log2(T )
)

.



B Proofs of some lemmas

Proof. [Lemma 7]
Let t be an EllipsoidSample step. We first show that
E[̃ft] = ft. We condition on all the randomness prior
to this step, thus, µ̃t is fixed. In the following, Et

denotes this conditional expectation. Now, condition
on the choice it and average over the choice of εt:

Et[g̃t] =
1
2
n

(
(ft − µ̃t)T(xt + λ

−1/2
it

vit)
)

λ
1/2
it

vit

− 1
2
n

(
(ft − µ̃t)T(xt − λ

−1/2
it

vit
)
)

λ
1/2
it

vit

= n((ft − µ̃t)Tvit
)vit

.

Hence,

Et[g̃t] =
n∑

i=1

1
n
· n((ft − µ̃t)Tvit

)vit
= ft − µ̃t,

since the vi form an orthonormal basis. Thus, Et [̃ft] =
Et[g̃t] + µ̃t = ft.

Furthermore, it is easy to see that Et[yt] = xt, since
yt is drawn from a symmetric distribution centered at
xt (namely, the uniform distribution on the endpoints
of the principal axes of the Dikin ellipsoid centered at
xt). Thus, we conclude that

Et(f T

t (yt − u)) = fT

t (xt − u) = Et(f̃T

t (xt − u)),

and hence, taking expectation over all the randomness,
we have

E(f T

t (yt − u)) = E(f̃ T

t (xt − u)).

Now, let t be a SimplexSample step. In this
case, we have |fT

t (yt − u)‖ ≤ |ft‖‖yt − u‖ ≤ 2, and
f̃ T
t (xt − u) = 0. Thus,

E(f T

t (yt − u)) ≤ E(f̃T

t (xt − u)) + 2.

Overall, if X is the number of SimplexSample
sampling steps, we have

E(f T

t (yt − u)) ≤ Et(f̃ T

t (xt − u)) + 2E[X].

Finally, using the fact that E[X] =
∑T

t=1
nk
t ≤

nk log(T ) ≤ n log2(T ), the proof is complete. ¥
Proof. [Lemma 8]

The following bound on the regret is fairly standard
for the FTRL algorithm (for proof see Lemma 2 in [1]):

T∑
t=1

f̃ T

t (xt − u) ≤
T∑

t=1

f̃ T

t (xt − xt+1)

+
1
η
[R(u)−R(x1)−∇R(x1)T(u− x1)]

=
T∑

t=1

f̃ T

t (xt − xt+1) +
1
η
[R(u)−R(x1)]

since ∇R(x1) = 0 because x1 minimizes R over K.
As in [1], we restrict our attention to a particular set

of u’s: viz. the Minkowski section K1/T . By equation
(2.4), we have that R(u)−R(x1) ≤ 2ϑ log(T ).

Thus, to compare the performance of the algorithm
with respect to any point v ∈ K, we may instead
compare the performance with respect to a point u ∈
K1/T instead. We can bound the difference in costs as

T∑
t=1

|fT

t (v − u)| ≤
T∑

t=1

‖ft‖‖v − u‖ ≤
T∑

t=1

1/T = 1.

¥

Proof. [Lemma 11]
Fix any time period t. Now, for any coordinate i, µ̃t(i)
is the average of a k samples chosen without replacement
from Ft := {fτ (i) | τ = −(nk−1), . . . , 0, 1, . . . , t}, where
we set fτ = 0 for τ = −(nk − 1), . . . , 0. Thus, we
have E[µ̃t(i)] = µt(i), and hence E[(µ̃t(i) − µt(i))2] =
VAR[µ̃t(i)].

Now consider another estimator νt(i), which aver-
ages k samples chosen with replacement from Ft. It is
easy to check that VAR[µ̃t(i)] ≤ VAR[νt(i)]. Thus, we
bound VAR[νt(i)] instead.

Let µ = 1
T

∑T
t=1 ft. We have

VAR[νt(i)] = E[(νt(i)− µt(i))2]

≤ E[(νt(i)− µ(i))2]

=
1
k

t∑

τ=−(nk−1)

1
t + nk

(ft(i)− µ(i))2

≤ 1
tk

[
nkµ(i)2 +

T∑
τ=1

(ft(i)− µ(i))2
]

.

Summing up over all coordinates i, we get

E[‖µ̃t − µt‖2] ≤
∑

i

VAR[νt(i)] ≤ 1
tk

(QT + nk).

Summing up over all t, we get

E

[
T∑

t=1

‖µ̃t − µt‖2
]

≤ ∑T
t=1

1
tk (QT + nk)

≤ log(T )
k (QT + nk).

¥


