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Abstract

There is an unfortunate error in our paper “Learning rotations with little regret” [HKW10] which
appeared in COLT 2010. The sampling procedure for the noise matrix given in [HKW10] does
not produce matrices with the right density. In this corrigendum, we describe the error, and give
a correct sampling procedure. Unfortunately, even with the correct sampling procedure, the regret
bound we get is O(n

√
T ), which is weaker than the claimed regret bound of O(

√
nT ) of the

original paper [HKW10]. However, in this corrigendum we give a new algorithm based on Online
Gradient Descent which obtains the optimal regret bound of O(

√
nT ) for the online learning of

rotations problem.

1 Description of Error
The error is in Section 3 of the paper, where we claim that the noise matrix N in Algorithm 1 of [HKW10] is
drawn according to the following density:

dµ(N) ∝ exp(−ε‖N‖?) dN, (C1)

where dµ(N) denotes the induced probability measure on Rn×n by the sampling process and dN =
dN11dN12 . . . dNnn the Lebesgue (i.e. uniform) measure on Rn×n. This claim is incorrect. The sampling
scheme described in Algorithm 1 does not choose N with probability density proportional to exp(−ε‖N‖?) =
exp(−ε

∑
i σi) w.r.t. the Lebesgue measure dN. This is because we sample N via its singular value decom-

position, N = UΣV>. To compute expectations over N, we need to use the change of variables formula
involving the determinant of the Jacobian matrix. We have the following change of variables formula (see
[Ede05] Theorem 3):

dN =
1

Z

∏
i<j

|σ2
i − σ2

j | dσ1dσ2 . . . dσn(UdU>)∧(VdV>)∧,

where Z is the normalization constant, and the wedge-product (UdU>)∧ denotes the volume form for the
Haar measure on the orthogonal group O(n). The Haar measure is the unique (up to scaling) measure on the
orthogonal group O(n) that is invariant under multiplication (from the left or the right) by an arbitrary or-
thogonal matrix. The current sampling scheme of [HKW10] samples N by selecting U and V from the Haar
measure over O(n), and the diagonal elements of Σ i.i.d. from the exponential distribution ε exp(−εσ) dσ,
and then setting N = UΣV>. The density of the probability distribution (w.r.t. the product measure) of
(U,Σ,V) is then

1

Z
εn exp(−ε

∑
iσi) dσ1dσ2 . . . dσn(UdU>)∧(VdV>)∧,

which by the change of variables formula given above, leads to the following correct expression for the
density (w.r.t. the Lebesgue measure) of the sampling distribution for N used by Algorithm 1:

dµ(N) =
εn exp(−ε

∑
i σi)

Z
∏
i<j |σ2

i − σ2
j |
dN.
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2 Weaker Regret Bound via Correct Sampling Procedure
There is a way to efficiently sample the noise matrix N according density (C1). Since this is a log-concave
density, the algorithms of Lovász-Vempala [LV06a] can be used to sample from it. There is a more efficient
method as well: sample a matrix M from the unit ball B? = {N : ‖N‖? ≤ 1} 1 and a scale factor r from
the Gamma(n2 + 1, 1/ε) distribution, and output rM (see Appendix A for details).

However, even if we correctly sample N according to density (C1), then we can only show a weaker
regret bound of O(n

√
L), where L is the total loss of best rotation matrix in hindsight, rather than the

claimed bound of O(
√
nL). The regret bound of [HKW10] relies on the key inequalities (2) and (3) of

that paper. Inequality (2) of [HKW10] is now valid because with the correct sampling scheme, we do
have dµ(N) = 1

Z?
exp(−ε‖N‖?) dN, where Z? is the normalization factor, and hence the inequalities

in [HKW10] bounding dµ(N−ytx
>
t )

dµ(N) ≥ 1− ε are correct.
However inequality (3) of [HKW10] is not valid and we can only replace it with the following weaker

inequality which only gives the weaker regret bound of O(n
√
L):

E[N • (R1 −R?)] ≤ 2n2

ε
, (C2)

To see this, we first bound the LHS of (C2) by 2E[‖N‖?] (as done in [HKW10]) and then notice that in
our new sampling scheme ‖N‖? is distributed2 as Gamma(n2, 1/ε) (see Appendix A), which implies that
E[‖N‖?] = n2/ε.

3 Optimal Regret via Online Gradient Descent
We now give a different algorithm for the rotation learning problem which obtains the optimal regret that was
claimed in the original paper. The main idea is to run the Online Gradient Descent (OGD) algorithm (see e.g.
Zinkevich [Zin03]). We first use this algorithm to learn an orthogonal matrix in an on-line fashion, i.e. we
are allowed to predict with an orthogonal matrix rather than a rotation matrix. To be precise, in round t we
are given a unit vector xt, and are required to produce an orthogonal matrix Ut and predict ŷt = Utxt. Then
a vector yt is revealed, and we suffer the loss Lt(Ut) = 1

2‖Utxt − yt‖2 = 1− (ytx
>
t ) •Ut..

The gradient of the loss Lt(Ut) with respect to Ut is −ytx
>
t . The OGD algorithm does a gradient

descent step in each trial and then projects the resulting matrix into a convex set, here the convex hull of the
set of all orthogonal matrices, O(n). Later, we show how to solve the rotations problem by modifying the
OGD algorithm for learning orthogonal matrices.

We first characterize the convex hull of O(n):

Lemma 1 The convex hull of O(n) is exactly the set of matrices of spectral norm at most 1: B = {M :
‖M‖ ≤ 1}. Furthermore, given any matrix M ∈ B, there is a polynomial time randomized rounding
algorithm, which produces a random orthogonal matrix M̃ such that E[M̃] = M.

Proof: Since all singular values of any orthogonal matrix are equal to 1, we have O(n) ⊆ B, and hence the
convex hull ofO(n) is contained inB. We now give the randomized rounding procedure, which automatically
implies that B is contained in the convex hull of O(n), completing the characterization.

Let M ∈ B be any square matrix, and let M = UΣV> be the SVD of M, where Σ = diag(σ1, σ2, . . . , σn).
Since ‖M‖ ≤ 1, the singular value σi ∈ [0, 1] for all i = 1, 2, . . . , n. Consider the random diagonal matrix
Σ̃ = diag(σ̃1, σ̃2, . . . , σ̃n) defined as

σ̃i =

{
1 with probability (1 + σi)/2

−1 with probability (1− σi)/2

Note that for all i, we have E[σ̃i] = σi and therefore E[Σ̃] = Σ. Furthermore, Σ̃ is an orthogonal matrix, and
hence M̃ = UΣ̃V> is an orthogonal matrix too. Finally, by the linearity of the expectation, E[M̃] = M.

Gradient descent in our matrix setting is motivated by regularizing with half of the squared Frobenius
norm, which is defined as ‖M‖F =

√
M •M =

√∑
ijM

2
ij . After a gradient descent step, the algorithm

projects the parameter matrix back into the convex set B, where the projection is with respect to the same
norm. It is easy to compute this projection via the SVD:

1This can also be done since the unit ball is a well-rounded convex body, with membership and separation oracles, see
[LV06b] for details.

2For a slightly worse bound, we can simply bound ‖N‖? by the scaling factor r chosen in the sampling procedure,
since ‖M‖? ≤ 1, and using the fact that r is distributed as Gamma(n2 + 1, 1/ε).
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Lemma 2 Let M ∈ Rn×n be any square matrix and let UΣV> be the SVD of this matrix, where Σ =

diag(σ1, σ2, . . . , σn). For all i = 1, 2, . . . , n, let σ̃i = min{σi, 1}, and let Σ̃ = diag(σ̃1, σ̃2, . . . , σ̃n). Then
the projection of M onto B is

arg min
M′∈B

‖M−M′‖F = UΣ̃V>.

Proof: Since the spectral norm and Frobenius norm are unitarily invariant, it is easy to see that

arg min
M′∈B

‖M−M′‖F = U (arg min
Q∈B

‖Σ−Q‖F ) V>.

So it suffices to focus on computing the projection for the diagonal matrix Σ: We need to find a matrix Q ∈ B
which minimizes

∑
ij(Σij −Qij)2. Since ‖Q‖ ≤ 1, we get that Qij ∈ [−1, 1].

Consider a relaxation of the problem where we seek a matrix Q which minimizes
∑
ij(Σij − Qij)

2

subject only to the constraintsQij ∈ [−1, 1]. Since the off diagonal elements of Σ are zero, the solution of the
relaxed problem is a diagonal matrix. Furthermore, since all Σii = σi ∈ [0, 1], the i-th diagonal element of the
solution is σ̃i = min{σi, 1}. Hence, the optimal solution to the relaxed problem is Σ̃ = diag(σ̃1, σ̃2, . . . , σ̃n).
This matrix lies in B as well since all σ̃i ∈ [0, 1]. Hence Σ̃ is also the optimal solution for the original
projection problem over B.

Now, we can describe the OGD algorithm over B. This requires a parameter η which we tune later.

Algorithm 1 OGD on B
1: Let W1 be an arbitrary orthogonal matrix (for instance, the identity matrix I).
2: for t = 1 to T do
3: Obtain vector xt.
4: Randomly round Wt to an orthogonal matrix Ut and use it in round t.
5: Predict ŷt = Utxt and observe the result vector yt. Suffer loss 1

2‖ŷt − yt‖2.
6: Update W′

t+1 = Wt + η ytx
>
t .

7: Compute the projection Wt+1 of W′
t+1 onto B.

8: end for

Note that in expectation, we predict using the matrix Wt at round t, and hence the expected regret can be
bounded by the regret for playing Wt. The following elementary regret bound uses squared Frobenius norm
as a measure of progress (see e.g. [CBLW96]) and the Pythagorean Theorem to show that the projections
step does not hurt (see [HW01]).

Theorem 3 If Algorithm 1 is run with η = 2
√

n
T , then it produces random orthogonal matrices Ut such that

E[RegretT ] =

T∑
t=1

E[Lt(Ut)]− min
U∈O(n)

T∑
t=1

Lt(U) ≤ 2
√
nT .

Proof: For any comparator U ∈ B,

‖Wt+1 −U‖2F = ‖proj(Wt + ηytx
>
t )−U‖2F

≤ ‖Wt + η ytx
>
t −U‖2F = ‖Wt −U‖2F + 2η(Wt −U) • (ytx

>
t ) + η2 ‖ytx>t ‖2F︸ ︷︷ ︸

=1

,

where the inequality follows from the Pythagorean Theorem (see [HW01] for an extended discussion of this).
By rearranging we get the following inequality for each trial:

(1−Wt • (ytx
>
t ))− (1−U • (ytx

>
t )) ≤ ‖Wt −U‖2F − ‖Wt+1 −U‖2F

2η
+
η

2
.

By summing over all T trials we get∑
t

Lt(Wt)−
∑
t

Lt(U) ≤ ‖W1 −U‖2F − ‖WT+1 −U‖2F
2η

+
ηT

2
≤ 2n

η
+
ηT

2
,

since ‖W1 −U‖2F ≤ n‖W1 −U‖2 ≤ 2n‖W1‖2 + 2n‖U‖2 ≤ 4n and ‖WT+1 −U‖2F ≥ 0. The RHS is
minimized at 2

√
nT by choosing η = 2

√
n
T .

The running time is dominated by computing the SVD of Wt, which is O(n3).
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3.1 Solving the Online Learning of Rotations Problem

We now solve the online learning of rotations problem via a special trick, that exploits the fact that we are
given the vector xt before we are required to produce the rotation matrix Rt. We run Algorithm 1, except for
the following addition to line 4: if the random orthogonal matrix Ut happens to be a rotation matrix, then we
set Rt = Ut. Otherwise, we set Rt to be an arbitrary rotation matrix such that Rtxt = Utxt. Note that this
can be done since we can always rotate any unit vector into any other unit vector (an explicit construction is
given at the end of this subsection). Call the resulting algorithm for the online learning of rotations problem
Algorithm 2.

Algorithm 2 predicts with ŷt = Rtxt, which is equal Utxt. Hence E[Lt(Rt)] = E[Lt(Ut)] and from
Theorem 3, we immediately get the following regret bound:

Theorem 4 If Algorithm 2 is run with η = 2
√

n
T , then it produces random rotation matrices Rt such that

T∑
t=1

E[Lt(Rt)]− min
U∈O(n)

T∑
t=1

Lt(U) ≤ 2
√
nT .

Algorithm also runs in O(n3) time per iteration. Note that this is actually a stronger regret bound, since we
measure regret against the best orthogonal matrix, rather than the best rotation matrix and O(n) ⊇ SO(n).

Finally, we give an explicit construction of a rotation matrix that takes a given unit vector x into any
other given unit vector y. Let U be an orthogonal matrix whose first column is x and whose second column
z is chosen so that the span of {x, z} equals the span of {x,y}. Clearly U can be found by starting the
Gram-Schmidt orthonormalization with the vectors {x,y} and completing it to a basis of the whole space.
Let G be the following Givens rotation matrix: G11 = G22 = y · x, G21 = −G12 = y · z, Gii = 1 for all
i > 2, and all other entries are 0. Then the matrix R = UGU> is a rotation matrix since U is an orthogonal
and G a rotation matrix. Furthermore, it is easy to check that Rx = (y · x) x + (y · z) z = y.

4 A final question

Even though the regret bound of O(
√
nT ) matches the lower bound given in [HKW10], it is still slightly

weaker than the claimed bound of [HKW10], which was O(
√
nL), where L is the loss of the best rotation

matrix for the given example sequence. The vanilla OGD analysis doesn’t give the tighter bound. Obtaining
the tighter bound remains an open problem.
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A Sampling
We describe a general procedure to sample points in Rd from a distribution D, with density (w.r.t. the
Lebesgue measure) proportional to exp(−ε‖x‖) dx for some norm ‖ · ‖ on Rd. In the paper, we apply this
sampling procedure with the domain being matrices in Rn×n, and the norm being the trace norm ‖ · ‖? for
matrices, being careful to note that the dimension d = n2.

We need some notation first. Let B be the unit ball in ‖ · ‖, i.e. B = {x ∈ Rd : ‖x‖ ≤ 1}, and let ∂B
be its boundary, i.e. ∂B = {x ∈ Rd : ‖x‖ = 1}. We now give an efficient algorithm to sample from D,
assuming we can sample a point uniformly at random from B.

Sampling from D.

1. Choose r from the Gamma(d+ 1, 1/ε) distribution.
2. Choose v ∈ B uniformly at random.
3. Output rv.

Theorem 5 The given procedure samples x with density proportional to exp(−ε‖x‖) dx.

Proof: The sampling procedure given above can be equivalently described as choosing r ∼ Gamma(d +
1, 1/ε) and then sampling a point uniformly at random from rB. A given point x will be sampled only if
r ≥ ‖x‖. Define V (r) = Vol(rB) = rdV (1). Then the density at point x can be obtained as follows:∫ ∞

r=‖x‖

dx

V (r)
· rde−εr

ε−(d+1)Γ(d+ 1)
dr =

∫ ∞
r=‖x‖

1

rdV (1)
· rde−εr

ε−(d+1)Γ(d+ 1)
drdx

= − 1

ε−dV (1)Γ(d+ 1)
e−εrdx

∣∣∣∣∞
‖x‖

=
e−ε‖x‖

ε−dV (1)Γ(d+ 1)
dx.

The following gives a characterization of the distribution of ‖x‖:

Lemma 6 The distribution of ‖x‖ when x is sampled from D is Gamma(d, 1/ε).

Proof: The given sampling procedure chooses a real number r ≥ 0 from the Gamma(d+ 1, 1/ε) distribution
and a vector v ∈ B uniformly at random. Thus, by the Law of Total Probability, we have

Pr[‖x‖ ≤ R] =

∫ ∞
r=0

Pr[v ∈ (R/r)B] · rde−εr

ε−(d+1)Γ(d+ 1)
dr

=

∫ R

r=0

1 · rde−εr

ε−(d+1)Γ(d+ 1)
dr +

∫ ∞
r=R

(R/r)d · rde−εr

ε−(d+1)Γ(d+ 1)
dr

=

∫ R

r=0

rde−εr

ε−(d+1)Γ(d+ 1)
dr +

Rde−εR

ε−dΓ(d+ 1)
.

Since
d

dr
[rde−εr] = drd−1e−εr − εrde−r,

by using integration by parts, we have

Prr∼Gamma(d,1/ε)[r ≤ R] =

∫ R

r=0

rd−1e−εr

ε−dΓ(d)
dr

=
ε

d

∫ R

r=0

rde−εr

ε−dΓ(d)
dr +

1

d

∫ R

r=0

d

[
rde−εr

ε−dΓ(d)

]
=

∫ R

r=0

rde−εr

ε−(d+1)Γ(d+ 1)
dr +

Rde−εR

ε−dΓ(d+ 1)
.

This is the cumulative distribution function of the Gamma(d, 1/ε) distribution, as required.
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