
COMS 4995-004: Optimization for Machine Learning

Homework 1.

Question 1. Let f : Rd → R be a twice differentiable convex function. In this question, we will
prove that ∇2f(x) � 0 for all x ∈ Rd. We will prove this by showing that for all vectors u ∈ Rd,
we have u>∇2f(x)u ≥ 0.

(a) (2 points) Let x, y ∈ Rd. Prove that∫ 1

t=0
(1− t)∂

2f(x+ ty)

∂2t
dt = f(x+ y)− f(x)−∇f(x)>y.

(Hint: think about integration by parts.)

(b) (2 points) Prove that
∂2f(x+ ty)

∂2t
= y>∇2f(x+ ty)y.

(c) (3 points) Set y = αu, for some α ∈ R. Using the convexity of f and parts (a) and (b), show
that there exists a t′ ∈ [0, 1] such that u>∇2f(x + t′αu)u ≥ 0. (Hint: use the mean-value
theorem on the integral in part (a).)

(d) (2 points) Show that part (c) implies that u>∇2f(x)u ≥ 0.

Solution.
1(a). Using integration by parts,∫ 1

t=0
(1− t)∂

2f(x+ ty)

∂2t
dt =

[
(1− t)∂f(x+ ty)

∂t

]1
t=0

−
∫ 1

t=0
−1 · ∂f(x+ ty)

∂t
dt.

We have ∂f(x+ty)
∂t = ∇f(x + ty)>y so the first term on the RHS above equals −∇f(x)>y. By the

fundamental theorem of calculus, the second term equals f(x+ y)− f(y).

1(b). We have ∂f(x+ty)
∂t = ∇f(x + ty)>y. By the chain rule, ∂∇f(x+ty)

∂t = ∇2f(x + ty)y. Putting

these together, we get ∂2f(x+ty)
∂2t

= y>∇2f(x+ ty)y.

1(c). Assume that α 6= 0. The case α = 0 is handled in 1(d).
By the convexity of f , we have f(x + y) − f(x) − ∇f(x)>y ≥ 0. Consider the case when

f(x + y) − f(x) − ∇f(x)>y > 0. Thus
∫ 1
t=0(1 − t)∂

2f(x+ty)
∂2t

dt > 0. By the intermediate value

theorem, there exists a t′ ∈ [0, 1] such that (1− t′) ∂2f(x+ty)
∂2t

∣∣∣
t=t′

=
∫ 1
t=0(1− t)

∂2f(x+ty)
∂2t

dt > 0. Thus,
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using 1(b), we have (1−t′)y>∇f(x+t′y)y > 0. Setting y = αu, we have (1−t′)α2u>f(x+t′αu)u > 0,
which implies that u>f(x+ t′αu)u > 0 for α 6= 0.

Now we consider the case when f(x+ y)− f(x)−∇f(x)>y = 0. Then
∫ 1
t=0(1− t)

∂2f(x+ty)
∂2t

dt =

0. Since ∂2f(x+ty)
∂2t

≥ 0, we conclude that ∂2f(x+ty)
∂2t

= 0 for all t ∈ [0, 1], which implies that
u>f(x+ t′αu)u = 0 for all t′ ∈ [0, 1] when α 6= 0.

1(d). Part 1(c) implies that for every α ∈ R, there exists a t′ ∈ [0, 1] such that u>f(x+ t′αu)u ≥ 0.
Now let α → 0. Note that t′α → 0 since t′ ∈ [0, 1]. Assuming ∇2f(·) is continuous1, we conclude
that u>f(x)u ≥ 0.

Question 2. Consider the following training set: S = {(xi, yi) ∈ R3 × R | i = 1, 2, 3}, where

(x1, y1) = ((2, 0, 0), 1)

(x2, y2) = ((0, 1, 0),−1)

(x3, y3) = ((0, 0, 0.5), 1).

Suppose we want to train a linear predictor fw = 〈w, x〉 for some weight vector w ∈ R3. Consider
training the predictor using the following three loss functions and regularization functions:

(i) (Square loss with no regularization) loss function `(ŷ, y) = (ŷ − y)2, no regularization.

(ii) (Square loss with `1 regularization) loss function `(ŷ, y) = (ŷ − y)2, regularization R(w) =
‖w‖1, regularization constant λ = 1.

(iii) (Logistic loss with no regularization) loss function `(ŷ, y) = log(1 + exp(−ŷy)), no regulariza-
tion.

(iii) (Logistic loss with `2 regularization) loss function `(ŷ, y) = log(1 + exp(−ŷy)), regularization
R(w) = 1

2‖w‖
2
2, regularization constant λ = 1.

For training loss function in each of the above cases, answer the following questions:

1. (2 points per function) Give formulas for the gradient (or subgradient, if the function is
not differentiable) and Hessian (if it exists) as a function of w.

2. (1 point per function) Is the function strongly convex? If yes, compute a lower bound on
the strong convexity constant µ. Try to make it as tight as possible.

3. (1 point per function) Is the function smooth? If yes, compute an upper bound on the
smoothness constant β. Try to make it as tight as possible.

Solution.
The training loss function is L(w) = 1

3

∑3
i=1 `(〈w, xi〉, yi) + λR(w). Using the chain rule, the

gradient is

∇L(w) =
1

3

3∑
i=1

`′(〈w, xi〉, yi)xi + λ∇R(w),

1This was inadvertently not specified in the problem description. As mentioned on Piazza it’s fine to make this
assumption.
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where `′(ŷ, y) := d`(ŷ,y)
dŷ if `(·, y) is differentiable at ŷ or a subderivative otherwise, and ∇R(w) is

the gradient of R at w if it is differentiable at w or the subgradient otherwise, with some abuse of
notation. Similarly, again using the chain rule, the Hessian is

∇L(w) =
1

3

3∑
i=1

`′′(〈w, xi〉, yi)xix>i + λ∇2R(w),

where `′′(ŷ, y) := d2`(ŷ,y)
dŷ2

, assuming the second derivatives exist. We now apply these formulas to
the specific loss and regularization functions in the problem.

(i) Loss function `(ŷ, y) = (ŷ − y)2, no regularization.

1. Here, `′(ŷ, y) = 2(ŷ − y) and `′′(ŷ, y) = 2. Thus we have

∇L(w) =
2

3

3∑
i=1

(〈w, xi〉 − yi)xi

and

∇L(w) =
2

3

3∑
i=1

xix
>
i =

2

3

4 0 0
0 1 0
0 0 0.25

 .
2. L(w) is strongly convex since its Hessian given above is positive definite. The smallest eigen-

value of the Hessian is 2
3 · 0.25 = 1

6 , so the tightest strong convexity constant equals 1
6 .

3. L(w) is smooth since all eigenvalues of its Hessian are bounded by 8
3 . The tightest smoothness

constant equals 8
3 .

(ii) loss function `(ŷ, y) = (ŷ − y)2, regularization R(w) = ‖w‖1, regularization constant λ = 1.

1. Here, `′(ŷ, y) = 2(ŷ − y) and `′′(ŷ, y) = 2. ‖w‖1 is not differentiable whenever there is a

coordinate that equals 0. For any coordinate wi 6= 0, we have ∂‖w‖1
∂wi

= wi
|wi| , and for any

coordinate wi = 0, the subdifferential set w.r.t. wi is [−1, 1]. Thus one possible subgradient
of ‖w‖1 is 〈sgn(w1), sgn(w2), . . . , sgn(wd)〉, where sgn : R→ [−1, 1] is defined as

sgn(u) =


1 if u > 0

−1 if u < 0

0 if u = 0.

The setting sgn(0) = 0 is an arbitrary choice, it can be set to any number in [−1, 1].

A subgradient of L(w) can thus be given as

∇L(w) =
2

3

3∑
i=1

(〈w, xi〉 − yi)xi + 〈sgn(w1), sgn(w2), . . . , sgn(wd)〉.

The Hessian only exists at points w which have no zero coordinates. At such points, ∇2‖w‖1 =
0, and this at such points,

∇L(w) =
2

3

3∑
i=1

xix
>
i =

2

3

4 0 0
0 1 0
0 0 0.25

 .
3



2. (Note: in class, we have only defined strong convexity for differentiable functions. Hence
the following answer will be considered valid.) L(w) is not strongly convex since it is not
differentiable everywhere.

(Note: strong convexity of a function f can be more generally defined as the following condi-
tion for any two points x, y: f(y) ≥ f(x) + g>(y − x) + α

2 ‖y − x‖
2, where g is a subgradient

of f at x. We will adopt this definition moving forward in the class. Several students have
given the following answer assuming this definition. This is also a valid answer.) We have
L(w) = 1

3

∑3
i=1(〈w, xi〉− yi)2 + ‖w‖1. While the ‖w‖1 is just convex but not strongly convex,

as in part (i) of this question, 1
3

∑3
i=1(〈w, xi〉 − yi)2 is 1

6 -strongly convex. Thus, L(w) is also
1
6 -strongly convex.

3. L(w) is not smooth since it is not differentiable everywhere. (Note: unlike strong convexity,
a smooth function is automatically differentiable everywhere, hence it doesn’t make sense to
define it in terms of subgradients.)

(iii) Loss function `(ŷ, y) = log(1 + exp(−ŷy)), no regularization.

1. Here, `′(ŷ, y) = − exp(−ŷy)y
1+exp(−ŷy) and `′′(ŷ, y) = exp(−ŷy)y2

(1+exp(−ŷy))2 . Thus we have

∇L(w) =
1

3

3∑
i=1

− exp(−〈w, xi〉yi)yi
1 + exp(−〈w, xi〉yi)

xi

and

∇2L(w) =
1

3

3∑
i=1

exp(−〈w, xi〉yi)y2i
(1 + exp(−〈w, xi〉yi))2

xix
>
i .

2. Using the specific values of (xi, yi), we can also write the Hessian as

∇2L(w) = diag

(
4 exp(−2w1)

3(1 + exp(−2w1))2
,

exp(w2)

3(1 + exp(w2))2
,

0.25 exp(−0.5w3)

3(1 + exp(−0.5w3))2)

)
,

where diag(a, b, c) is the diagonal matrix with a, b, c on the diagonal. Since the Hessian is a
diagonal matrix, its eigenvalues are exactly the diagonal entries. Now if we let w1 → −∞, then
the first diagonal entry goes to 0, which means that there is no α > 0 such that ∇2L(w) � αI
for all w. Hence, L(w) is not strongly convex.

3. To analyze the smoothness of L(w), we note that all the eigenvalues of ∇2L(w) are of the
form cu

(1+u)2
, where c is a constant and u ≥ 0. Note that2 u

(1+u)2.
≤ 1

4 for all u, with equality

when u = 1. Thus cu
(1+u)2

≤ c
4 , and hence the diagonal entries of ∇2L(w) are bounded by

1
3 ,

1
12 ,

1
48 respectively, with all these bounds simultaneously attained when w1 = w2 = w3 = 0.

Thus, the tightest smoothness constant is 1
3 .

(iii) Loss function `(ŷ, y) = log(1 + exp(−ŷy)), regularization R(w) = 1
2‖w‖

2
2, regularization con-

stant λ = 1.

2 u
(1+u)2

≤ 1
4
⇔ 4u ≤ (1 + u)2 ⇔ 0 ≤ (1− u)2
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1. We can reuse the calculations from (iii) along with the facts that∇R(w) = w and∇2R(w) = I
to get

∇L(w) =
1

3

3∑
i=1

− exp(−〈w, xi〉yi)yi
1 + exp(−〈w, xi〉yi)

xi + w

and

∇2L(w) =
1

3

3∑
i=1

exp(−〈w, xi〉yi)y2i
(1 + exp(−〈w, xi〉yi))2

xix
>
i + I.

2. We can rewrite the Hessian as

∇2L(w) = diag

(
4 exp(−2w1)

3(1 + exp(−2w1))2
+ 1,

exp(w2)

3(1 + exp(w2))2
+ 1,

0.25 exp(−0.5w3)

3(1 + exp(−0.5w3))2)
+ 1

)
.

All eigenvalues of the Hessian are at least 1, attained when w1 → −∞. Thus, the tightest
strong convexity constant is 1.

3. Reasoning as in (iii), the eigenvalues of the Hessian are bounded by 4
3 ,

13
12 ,

49
48 respectively.

Thus the tightest smoothness constant is 4
3 .
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