
COMS 4995-004: Optimization for Machine Learning

Homework 1.

HW1 is due Thursday, Sept 26 by 1:00 pm. No late assignments will be accepted1.
Please refer to https://www.satyenkale.com/optml-f19/ for instructions on how to sub-
mit homework assignments.

Question 1. Let f : Rd → R be a twice differentiable convex function. In this question, we will
prove that ∇2f(x) � 0 for all x ∈ Rd. We will prove this by showing that for all vectors u ∈ Rd,
we have u>∇2f(x)u ≥ 0.

(a) (2 points) Let x, y ∈ Rd. Prove that∫ 1

t=0
(1− t)∂

2f(x+ ty)

∂2t
dt = f(x+ y)− f(x)−∇f(x)>y.

(Hint: think about integration by parts.)

(b) (2 points) Prove that
∂2f(x+ ty)

∂2t
= y>∇2f(x+ ty)y.

(c) (3 points) Set y = αu, for some α ∈ R. Using the convexity of f and parts (a) and (b), show
that there exists a t′ ∈ [0, 1] such that u>∇2f(x + t′αu)u ≥ 0. (Hint: use the mean-value
theorem on the integral in part (a).)

(d) (2 points) Show that part (c) implies that u>∇2f(x)u ≥ 0.

Question 2. Consider the following training set: S = {(xi, yi) ∈ R3 × R | i = 1, 2, 3}, where

(x1, y1) = ((2, 0, 0), 1)

(x2, y2) = ((0, 1, 0),−1)

(x3, y3) = ((0, 0, 0.5), 1).

Suppose we want to train a linear predictor fw = 〈w, x〉 for some weight vector w ∈ R3. Consider
training the predictor using the following three loss functions and regularization functions:

(i) (Square loss with no regularization) loss function `(ŷ, y) = (ŷ − y)2, no regularization.

(ii) (Square loss with `1 regularization) loss function `(ŷ, y) = (ŷ − y)2, regularization R(w) =
‖w‖1, regularization constant λ = 1.

1Unless you have an emergency; in that case please write to Satyen as soon as possible.
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(iii) (Logistic loss with no regularization) loss function `(ŷ, y) = log(1 + exp(−ŷy)), no regulariza-
tion.

(iii) (Logistic loss with `2 regularization) loss function `(ŷ, y) = log(1 + exp(−ŷy)), regularization
R(w) = 1

2‖w‖
2
2, regularization constant λ = 1.

For training loss function in each of the above cases, answer the following questions:

1. (2 points per function) Give formulas for the gradient (or subgradient, if the function is
not differentiable) and Hessian (if it exists) as a function of w.

2. (1 point per function) Is the function strongly convex? If yes, compute a lower bound on
the strong convexity constant µ. Try to make it as tight as possible.

3. (1 point per function) Is the function smooth? If yes, compute an upper bound on the
smoothness constant β. Try to make it as tight as possible. (Note: smoothness wasn’t defined
as of the class of Sept 12; we will cover it on the class of Sept 17.)
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