
COMS 4995-004: Optimization for Machine Learning

Homework 2.

Question 1. The gradient methods we studied in class for minimizing β-smooth functions and
β-smooth & α-strongly convex functions have a desirable anytime guarantee on the iterates: we
can stop the method at any time step t and are guaranteed that the iterate xt has a guaranteed
suboptimality. Specifically, the analysis we saw in class immediately yields the following statements:

• For β-smooth functions f , the gradient method run with step-size η = 1
β guarantees that at

any time step t, we have f(xt)− f(x∗) ≤ β‖x0−x∗‖2
2t .

• For β-smooth & α-strongly convex functions the gradient method run with step-size η = 1
β

guarantees that at any time step t, we have f(xt)− f(x∗) ≤ (1− α
β )t β‖x0−x

∗‖2
2 .

Unfortunately, the analysis we saw for L-Lipschitz convex functions with a constant step-size η does
not have such a guarantee. In this question, we will derive a tweak to the gradient method that
enjoys an anytime guarantee using decreasing step-sizes. Suppose we run the projected gradient
method for minimizing an L-Lipschitz convex function over a convex set K which has diameter
bounded by D, i.e. for any x, x′ ∈ K, we have ‖x− x′‖2 ≤ D. Consider running the method with
decreasing step-sizes η1 ≥ η2 ≥ η3 · · · . I.e. we start at an arbitrary point x0, and at time step t we
set xt+1 =

∏
K(xt − ηt∇f(xt)).

1. (1 point) Show that

f(xt)− f(x∗) ≤ 1

2ηt
(‖xt − x∗‖2 − ‖xt+1 − x∗‖2) +

ηt
2
‖∇f(xt)‖2.

2. (4 points) Using the above inequality, show that

t∑
i=0

f(xi)− f(x∗) ≤ D2

2ηt
+
L2

2

t∑
i=0

ηi.

3. (4 points) Suppose we set ηi = D
L
√
i+1

. Let x̄t = 1
t+1

∑t
i=0 xi. Then show that

f(x̄t)− f(x∗) ≤ 2DL√
t+ 1

.

Solution.
1. Let yt+1 = xt − ηt∇f(xt). We have

‖yt+1 − x∗‖2 = ‖xt − ηt∇f(xt)− x∗‖2 = ‖xt − x∗‖2 + η2t ‖∇f(xt)‖2 − 2ηt∇f(xt)
>(xt − x∗).
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Using the properties of projection on a convex set, we have ‖yt+1 − x∗‖2 ≥ ‖xt+1 − x∗‖2. Putting
these two inequalities together, and simplifying, we get

∇f(xt)
>(xt − x∗) ≤

1

2ηt
(‖xt − x∗‖2 − ‖xt+1 − x∗‖2) +

ηt
2
‖∇f(xt)‖2.

Using the convexity of f , we get ∇f(xt)
>(xt−x∗) ≥ f(xt)−f(x∗). Putting these bounds together,

we get the required inequality.

2. Summing up the inequality in part 1, we get

t∑
i=0

f(xi)− f(x∗) ≤
t∑
i=0

1

2ηi
(‖xi − x∗‖2 − ‖xi+1 − x∗‖2) +

t∑
i=0

ηi
2
‖∇f(xi)‖2

=
1

2η0
‖x0 − x∗‖2 −

1

2ηt
‖xt+1 − x∗‖2 +

t∑
i=1

(
1

2ηi
− 1

2ηi−1
)‖xi − x∗‖2 +

t∑
i=0

ηi
2
‖∇f(xi)‖2

≤ 1

2η0
D2 +

t∑
i=1

(
1

2ηi
− 1

2ηi−1

)
D2 +

t∑
i=0

ηi
2
L2

=
1

2ηt
D2 +

L2

2

t∑
i=0

ηi.

The second inequality uses the following facts:

1.
(

1
2ηi
− 1

2ηi−1

)
≥ 0 since ηi ≤ ηi−1.

2. ‖xi − x∗‖2 ≤ D2 for all i.

3. The term − 1
2ηt
‖xt+1 − x∗‖2 can be dropped since it is non-positive.

3. If we set ηi = D
L
√
i+1

, then
∑t

i=0 ηi =
∑t

i=0
D

L
√
i+1

. We have

t∑
i=0

1√
i+ 1

≤ 1 +

∫ t+1

x=1

1√
x

= 2
√
t+ 1− 1 ≤ 2

√
t+ 1.

Plugging this bound in the inequality of part 2, we get

t∑
i=0

f(xi)− f(x∗) ≤ 1

2ηt
D2 +

L2

2

t∑
i=0

ηi ≤
1

2
DL
√
t+ 1 +DL

√
t+ 1 ≤ 2DL

√
t+ 1.

Dividing by t+ 1, and using Jensen’s inequality to the convex function f , we get

f(x̄t)− f(x∗) ≤ 1

t+ 1

t∑
i=0

f(xi)− f(x∗) ≤ 2DL√
t+ 1

.

Question 2. Consider the following training set: S = {(xi, yi) ∈ R3 × R | i = 1, 2, 3}, where

(x1, y1) = ((2, 0, 0), 1)

(x2, y2) = ((0, 1, 0),−1)

(x3, y3) = ((0, 0, 0.5), 1).
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Suppose we want to train a linear predictor fw = 〈w, x〉 for some weight vector w ∈ K = {w ∈
R3 | ‖w‖2 ≤ 10}. Consider training the predictor using the following three loss functions and
regularization functions:

(i) (Square loss with no regularization) loss function `(ŷ, y) = (ŷ − y)2, no regularization.

(ii) (Square loss with `1 regularization) loss function `(ŷ, y) = (ŷ − y)2, regularization R(w) =
‖w‖1, regularization constant λ = 1.

(iii) (Logistic loss with no regularization) loss function `(ŷ, y) = log(1 + exp(−ŷy)), no regulariza-
tion.

(iv) (Logistic loss with `2 regularization) loss function `(ŷ, y) = log(1 + exp(−ŷy)), regularization
R(w) = 1

2‖w‖
2
2, regularization constant λ = 1.

Suppose we want to minimize the training loss function in each of the above cases up to a sub-
optimality gap of ε = 0.01 using a gradient method starting from w0 = 0. Describe which version
of gradient descent taught in class will require the minimum number of iterations T to achieve the
sub-optimality gap of ε. For each case, specify numerical values for the step-size η you will use in
the algorithm, and the number of iterations T that will be necessary to achieve the suboptimality
gap of ε. (4 points per training loss function)

Note: the setup is (almost) exactly the same as problem 2 in HW1 – the only difference is that
w is chosen from a bounded set K rather than all of R3. You may reuse all the calculations from
HW1 from your own solution or the one posted online. In doing the calculations, it is OK to make
somewhat crude numerical approximations.
Solution.
Since w∗ ∈ K, we have ‖w0 − w∗‖ ≤ 10. We will use this bound D = 10 in the analysis.

(i) (Square loss with no regularization) loss function `(ŷ, y) = (ŷ − y)2, no regularization. From
HW1, we have

∇L(w) =
2

3

3∑
i=1

(〈w, xi〉 − yi)xi

and

∇L(w) =
2

3

3∑
i=1

xix
>
i =

2

3

4 0 0
0 1 0
0 0 0.25

 .
We bound the gradient norm as follows:

‖2

3

3∑
i=1

(〈w, xi〉 − yi)xi‖ ≤
2

3

3∑
i=1

(‖w‖‖xi‖+ |yi|)|‖xi‖.

Since ‖w‖ ≤ 10, the above can be bounded as

2

3

3∑
i=1

(‖w‖‖xi‖+ |yi|)|‖xi‖ ≤
2

3
((10 · 2 + 1) · 2 + (10 · 1 + 1) · 1 + (10 · 0.5 + 1) · 0.5) ≤ 38.

In HW1 we showed that the training loss function is 1
6 -strongly convex and 8

3 -smooth. We
can now bound the number of iterations for various flavors of gradient descent as follows.
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(a) GD for L-Lipschitz functions: the number of iterations is bounded by

D2L2

ε2
≤ 102 · 382

0.012
= 1.444× 109.

(b) GD for β-smooth functions: the number of iterations is bounded by

βD2

2ε
=

8
3 · 102

2 · 0.01
≈ 13, 334.

(c) GD for α-strongly convex and β-smooth functions: after T steps, the sub-
optimality gap is bounded by

L·
(

1− α

β

)T/2
D+

β

2

(
1− α

β

)T
D2 = (1− 1

16)T/2·38·10+(1− 1
16)T ·4

3
·102 ≤ (1− 1

16)T/2·600.

To make this smaller than 0.01, we need

2 ·
log(0.01600 )

log(1− 1
16)
≈ 341

iterations.

(d) GD for L-Lipschitz and α-strongly convex functions: after T steps, the sub-
optimality gap is bounded by

L2 ln(T )

2αT
=

382 ln(T )

2 · 16T
=

4332 ln(T )

T
.

To make this smaller than 0.01, we need T to be around 7× 106.

So, the best method is the one for α-strongly convex and β-smooth functions, which requires
341 iterations. The step size required for this is 1

β = 3
8 .

(ii) (Square loss with `1 regularization) loss function `(ŷ, y) = (ŷ − y)2, regularization R(w) =
‖w‖1, regularization constant λ = 1.
Here, the training loss function is non-smooth but it is 1

6 strongly convex. The gradient is
2
3

∑3
i=1(〈w, xi〉−yi)xi+〈sign(w1), sign(w2), sign(w3)〉. We have ‖〈sign(w1), sign(w2), sign(w3)〉‖ =√

3 ≤ 2. Thus the Lipschitz constant can be bounded by 38 + 2 = 40. We can now bound
the number of iterations for various flavors of gradient descent as follows.

(a) GD for L-Lipschitz functions: the number of iterations is bounded by

D2L2

ε2
≤ 102 · 402

0.012
= 1.6× 109.

(b) GD for L-Lipschitz and α-strongly convex functions: after T steps, the sub-
optimality gap is bounded by

L2 ln(T )

2αT
=

402 ln(T )

2 · 16T
=

4800 ln(T )

T
.

To make this smaller than 0.01, we need T to be around 7× 106.
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So, the best method is the one for α-strongly convex Lipschitz functions, which requires 7×106

iterations. We need to use decreasing step sizes for this, viz. ηt = 1
α(t+1) = 6

t+1 .

(iii) (Logistic loss with no regularization) loss function `(ŷ, y) = log(1 + exp(−ŷy)), no regulariza-
tion.
Here, we have

∇L(w) =
1

3

3∑
i=1

− exp(−〈w, xi〉yi)yi
1 + exp(−〈w, xi〉yi)

xi

and

∇2L(w) = diag

(
4 exp(−2w1)

3(1 + exp(−2w1))2
,

exp(w2)

3(1 + exp(w2))2
,

0.25 exp(−0.5w3)

3(1 + exp(−0.5w3))2)

)
.

‖∇L(w)‖ =

∥∥∥∥∥1

3

3∑
i=1

− exp(−〈w, xi〉yi)yi
1 + exp(−〈w, xi〉yi)

xi

∥∥∥∥∥ ≤ 1

3

3∑
i=1

‖xi‖ =
3.5

3
≤ 2.

As worked out in HW1, the training loss function is 1
3 smooth. As for strong convexity, over the

set K, it is easy to check that the eigenvalues of the Hessian are at least 1
20 exp(−20) ≈ 10−10.

We can now bound the number of iterations for various flavors of gradient descent as follows.

(a) GD for L-Lipschitz functions: the number of iterations is bounded by

D2L2

ε2
≤ 102 · 22

0.012
= 4× 106.

(b) GD for β-smooth functions: the number of iterations is bounded by

βD2

2ε
=

1
3 · 102

2 · 0.01
≈ 1, 667.

(c) GD for α-strongly convex and β-smooth functions: since α ≈ 10−10, and the
bound on the number of iterations depends on 1

α , we need at least 1010 iterations, so
this bound is definitely worse than the bound only using smoothness and not strong
convexity.

(d) GD for L-Lipschitz and α-strongly convex functions: this bound also scales with
1
α ≥ 1010.

So, the best method is the one for β-smooth functions, which requires 1,667 iterations. The
step size needed for this is 1

β = 3.

(iv) (Logistic loss with `2 regularization) loss function `(ŷ, y) = log(1 + exp(−ŷy)), regularization
R(w) = 1

2‖w‖
2
2, regularization constant λ = 1.

We haev ∇R(w) = w, and ‖w‖ ≤ 10, so the Lipschitz constant becomes 2 + 10 = 12. As
worked out in HW1, the training loss function is 4

3 smooth and 1-strongly convex. As for
strong convexity, over the set K, it is easy to check that the eigenvalues of the Hessian are
at least 1

20 exp(−20) ≈ 10−10. We can now bound the number of iterations for various flavors
of gradient descent as follows.
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(a) GD for L-Lipschitz functions: the number of iterations is bounded by

D2L2

ε2
≤ 102 · 122

0.012
= 1.44× 108.

(b) GD for β-smooth functions: the number of iterations is bounded by

βD2

2ε
=

4
3 · 102

2 · 0.01
≈ 6, 667.

(c) GD for α-strongly convex and β-smooth functions: after T steps, the sub-
optimality gap is bounded by

L·
(

1− α

β

)T/2
D+

β

2

(
1− α

β

)T
D2 = (1− 3

4)T/2·12·10+(1− 3
4)T ·2

3
·102 ≤ (1− 1

16)T/2·200.

To make this smaller than 0.01, we need

2 ·
log(0.01200 )

log(1− 3
4)
≈ 15

iterations.

(d) GD for L-Lipschitz and α-strongly convex functions: after T steps, the sub-
optimality gap is bounded by

L2 ln(T )

2αT
=

122 ln(T )

2T
=

72 ln(T )

T
.

To make this smaller than 0.01, we need T to be around 80, 000.

So, the best method is the one for α-strongly convex and β-smooth functions, which requires
15 iterations. The step size needed for this is 1

β = 3
4 .
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