
COMS 4995-004: Optimization for Machine Learning

Homework 2 (Corrected version).

HW2 is due Saturday, Oct 12 by 1:00 pm. No late assignments will be accepted1.
Please refer to https://www.satyenkale.com/optml-f19/ for instructions on how to sub-
mit homework assignments.

Question 1. The gradient methods we studied in class for minimizing β-smooth functions and
β-smooth & α-strongly convex functions have a desirable anytime guarantee on the iterates: we
can stop the method at any time step t and are guaranteed that the iterate xt has a guaranteed
suboptimality. Specifically, the analysis we saw in class immediately yields the following statements:

• For β-smooth functions f , the gradient method run with step-size η = 1
β guarantees that at

any time step t, we have f(xt)− f(x∗) ≤ β‖x0−x∗‖2
2t .

• For β-smooth & α-strongly convex functions the gradient method run with step-size η = 1
β

guarantees that at any time step t, we have f(xt)− f(x∗) ≤ (1− α
β )t β‖x0−x

∗‖2
2 .

Unfortunately, the analysis we saw for L-Lipschitz convex functions with a constant step-size η does
not have such a guarantee. In this question, we will derive a tweak to the gradient method that
enjoys an anytime guarantee using decreasing step-sizes. Suppose we run the projected gradient
method for minimizing an L-Lipschitz convex function over a convex set K which has diameter
bounded by D, i.e. for any x, x′ ∈ K, we have ‖x− x′‖2 ≤ D. Consider running the method with
decreasing step-sizes η1 ≥ η2 ≥ η3 · · · . I.e. we start at an arbitrary point x0, and at time step t we
set xt+1 =

∏
K(xt − ηt∇f(xt)).

1. (1 point) Show that

f(xt)− f(x∗) ≤ 1

2ηt
(‖xt − x∗‖2 − ‖xt+1 − x∗‖2) +

ηt
2
‖∇f(xt)‖2.

2. (4 points) Using the above inequality, show that

t∑
i=0

f(xi)− f(x∗) ≤ D2

2ηt
+
L2

2

t∑
i=0

ηi.

3. (4 points) Suppose we set ηi = D
L
√
i+1

. Let x̄t = 1
t+1

∑t
i=0 xi. Then show that

f(x̄t)− f(x∗) ≤ 2DL√
t+ 1

.

1Unless you have an emergency; in that case please write to Satyen as soon as possible.
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Question 2. Consider the following training set: S = {(xi, yi) ∈ R3 × R | i = 1, 2, 3}, where

(x1, y1) = ((2, 0, 0), 1)

(x2, y2) = ((0, 1, 0),−1)

(x3, y3) = ((0, 0, 0.5), 1).

Suppose we want to train a linear predictor fw = 〈w, x〉 for some weight vector w ∈ K = {w ∈
R3 | ‖w‖2 ≤ 10}. Consider training the predictor using the following three loss functions and
regularization functions:

(i) (Square loss with no regularization) loss function `(ŷ, y) = (ŷ − y)2, no regularization.

(ii) (Square loss with `1 regularization) loss function `(ŷ, y) = (ŷ − y)2, regularization R(w) =
‖w‖1, regularization constant λ = 1.

(iii) (Logistic loss with no regularization) loss function `(ŷ, y) = log(1 + exp(−ŷy)), no regulariza-
tion.

(iv) (Logistic loss with `2 regularization) loss function `(ŷ, y) = log(1 + exp(−ŷy)), regularization
R(w) = 1

2‖w‖
2
2, regularization constant λ = 1.

Suppose we want to minimize the training loss function in each of the above cases up to a sub-
optimality gap of ε = 0.01 using a gradient method starting from w0 = 0. Describe which version
of gradient descent taught in class will require the minimum number of iterations T to achieve the
sub-optimality gap of ε. For each case, specify numerical values for the step-size η you will use in
the algorithm, and the number of iterations T that will be necessary to achieve the suboptimality
gap of ε. (4 points per training loss function)

Note: the setup is (almost) exactly the same as problem 2 in HW1 – the only difference is that
w is chosen from a bounded set K rather than all of R3. You may reuse all the calculations from
HW1 from your own solution or the one posted online. In doing the calculations, it is OK to make
somewhat crude numerical approximations.
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