
COMS 4995-004: Optimization for Machine Learning

Homework 3

HW3 is due Tuesday, Nov 14 by 1:00 pm. No late assignments will be accepted1.
Please refer to https://www.satyenkale.com/optml-f19/ for instructions on how to sub-
mit homework assignments.

In class we studied several algorithms to minimize convex functions. Minimizing nonconvex func-
tions f : Rd → R is significantly harder (it is NP-hard in the worst case), so we can only give weak
guarantees for first order methods like gradient descent. Typically, the objective here is to show
first order convergence: i.e. given any ε > 0, show that the method yields a point x such that
‖∇f(x)‖2 ≤ ε after some number of iterations which depends on ε (in the case of stochastic opti-
mization, we require x such that E[‖∇f(x)‖2] ≤ ε, where the expectation is over the randomness
in the stochastic gradients and the algorithm.)

In this homework we will derive such guarantees. Assume that f is a β-smooth nonconvex
function, and that f(x) ≥ 0 for all x ∈ Rd.

Question 1. (9 points) Consider running gradient descent on f with a step-size η: start with an
arbitrary point x0 ∈ Rd, and iterate xt+1 = xt − η∇f(xt) for T steps. Then show there is a choice
of the step-size η such that

T−1∑
t=0

‖∇f(xt)‖2 ≤ 2βf(x0).

From this bound, determine how large T needs to be (in terms of ε, β, f(x0)) to guarantee that
there is an iterate xt such that ‖∇f(xt)‖2 ≤ ε.

Question 2. (16 points) Now suppose f(x) = Eξ∼D[g(x, ξ)] where g(·, ξ) is differentiable for all
ξ and the distribution D is unknown. Thus it is not possible to evaluate f(x) or ∇f(x) at any
given point x. Assume that that variance of the stochastic gradients is bounded by σ2, i.e. for any
x ∈ Rd, we have Eξ∼D[‖∇g(x, ξ) − ∇f(x)‖2] ≤ σ2. Suppose now that we run stochastic gradient
descent as follows: start with an arbitrary point x0 ∈ Rd, and iterate xt+1 = xt−η∇g(xt, ξt) where
ξt is sampled from D, for T steps. Then show that if η ≤ 1

β , we have

T−1∑
t=0

E[‖∇f(xt)‖2] ≤
2

η
f(x0) + βησ2T.

1Unless you have an emergency; in that case please write to Satyen as soon as possible.
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Using this bound, compute a value of η which ensures that

T−1∑
t=0

E[‖∇f(xt)‖2] ≤ O(βf(x0) +
√
βf(x0)σ2T ).

Suppose we output a random iterate, i.e. choose R ∈ {0, 1, 2, . . . , T − 1} uniformly at random, and
then output xR. Then conclude that

E[‖∇f(xR)‖2] ≤ O

(
βf(x0) +

√
βf(x0)σ2T

T

)
,

where the expectation is over the choice of R as well as ξ0, ξ1, . . . , xT−1. Using this bound, deter-
mine how large T needs to be (in terms of ε, β, f(x0), σ) to guarantee that E[‖∇f(xR)‖2] ≤ ε (it is
fine to use the Ω(·) notation in your lower bound on T to suppress numerical constants).

Solution: question 1.
By the β-smoothness of f , we have

f(xt+1) ≤ f(xt) +∇f(xt) · (xt+1 − xt) +
β

2
‖xt+1 − xt‖2 = f(xt)− η‖∇f(xt)‖2 +

βη2

2
‖∇f(xt)‖2.

Setting η = 1
β , we get f(xt+1) ≤ f(xt) − 1

2β‖∇f(xt)‖2, and so ‖∇f(xt)‖2 ≤ 2β(f(xt) − f(xt+1)).
Summing up this bound from t = 0 to T − 1, and noticing that the RHS telescopes, we get

T−1∑
t=0

‖∇f(xt)‖2 ≤ 2β(f(x0)− f(xT )) ≤ 2βf(x0),

since f(xT ) ≥ 0. Thus 1
T

∑T−1
t=0 ‖∇f(xt)‖2 ≤ 2βf(x0)

T , which implies that there exists some iterate

xt for t ∈ {0, 1, . . . , T − 1} such that ‖∇f(xt)‖2 ≤ 2βf(x0)
T . The RHS becomes smaller than ε when

T ≥ 2βf(x0)
ε .

Solution: question 2.
By the β-smoothness of f , we have

f(xt+1) ≤ f(xt) +∇f(xt) · (xt+1 − xt) +
β

2
‖xt+1 − xt‖2 = f(xt)− η∇g(xt, ξt) +

βη2

2
‖∇g(xt, ξt)‖2.

Taking expectation on both sides of the inequality above conditioned on xt, and using the facts
that E[∇g(xt, ξt)|xt] = ∇f(xt) and E[‖∇g(xt, ξt)‖2|xt] ≤ ‖∇f(xt)‖2 + σ2, we get

E[f(xt+1)|xt] = f(xt)− η‖∇f(xt)‖2 +
βη2

2
(‖∇f(xt)‖2 + σ2) ≤ f(xt)−

η

2
‖∇f(xt)‖2 +

βη2

2
σ2,

if we choose η ≤ 1
β . Taking expectation on both sides of the inequality to remove the conditioning

on xt, we get

E[f(xt+1)] = E[f(xt)]−
η

2
E[‖∇f(xt)‖2]+

βη2

2
σ2 ⇒ E[‖∇f(xt)‖2] ≤

2

η
(E[f(xt)]−E[f(xt+1)])+βησ

2.
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Summing up the inequality from t = 0 to T − 1, and noticing that the RHS telescopes, we get

T−1∑
t=0

E[‖∇f(xt)‖2] ≤
2

η
(f(x0)− E[f(xt+1)]) + βησ2T ≤ 2

η
f(x0) + βησ2T.

The above bound uses the fact that E[f(x0)] = f(x0) since x0 is not random, and that E[f(xt+1)] ≥
0. Now suppose we set η = min{ 1β ,

√
2f(x0)
βσ2T

} so that the condition that η ≤ 1
β is satisfied, we have

2

η
f(x0)+βησ

2T ≤ max

{
β,
√

βσ2T
2f(x0)

}
·2f(x0)+min

{
1

β
,
√

2f(x0)
βσ2T

}
·βσ2T = O(βf(x0)+

√
βf(x0)σ2T ).

Now if we choose an index R ∈ {0, 1, 2, . . . , T − 1}, then we have

E[‖∇f(xR)‖2] =
1

T

T−1∑
t=0

E[‖∇f(xt)‖2] ≤ O

(
βf(x0) +

√
βf(x0)σ2T

T

)
,

where the expectation on the LHS is over the choice of R as well as ξ0, ξ1, . . . , ξT−1. In order to
make the RHS above smaller ε, we need to choose

T ≥ Ω
(
βf(x0)

ε + βf(x0)σ2

ε2

)
.
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