COMS 4995-004: Optimization for Machine Learning Homework 3

HW3 is due Thursday, Nov 14 by 1:00 pm. No late assignments will be accepted¹. Please refer to https://www.satyenkale.com/optml-f19/ for instructions on how to submit homework assignments.

In class we studied several algorithms to minimize convex functions. Minimizing nonconvex functions $f: \mathbb{R}^d \to \mathbb{R}$ is significantly harder (it is NP-hard in the worst case), so we can only give weak guarantees for first order methods like gradient descent. Typically, the objective here is to show first order convergence: i.e. given any $\epsilon > 0$, show that the method yields a point x such that $\|\nabla f(x)\|^2 \le \epsilon$ after some number of iterations which depends on ϵ (in the case of stochastic optimization, we require x such that $\mathbb{E}[\|\nabla f(x)\|^2] \le \epsilon$, where the expectation is over the randomness in the stochastic gradients and the algorithm.)

In this homework we will derive such guarantees. Assume that f is a β -smooth nonconvex function, and that $f(x) \geq 0$ for all $x \in \mathbb{R}^d$.

Question 1. (9 points) Consider running gradient descent on f with a step-size η : start with an arbitrary point $x_0 \in \mathbb{R}^d$, and iterate $x_{t+1} = x_t - \eta \nabla f(x_t)$ for T steps. Then show there is a choice of the step-size η such that

$$\sum_{t=0}^{T-1} \|\nabla f(x_t)\|^2 \le 2\beta f(x_0).$$

From this bound, determine how large T needs to be (in terms of $\epsilon, \beta, f(x_0)$) to guarantee that there is an iterate x_t such that $\|\nabla f(x_t)\|^2 \le \epsilon$.

Question 2. (16 points) Now suppose $f(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[g(x,\xi)]$ where $g(\cdot,\xi)$ is differentiable for all ξ and the distribution \mathcal{D} is unknown. Thus it is not possible to evaluate f(x) or $\nabla f(x)$ at any given point x. Assume that that variance of the stochastic gradients is bounded by σ^2 , i.e. for any $x \in \mathbb{R}^d$, we have $\mathbb{E}_{\xi \sim \mathcal{D}}[\|\nabla g(x,\xi) - \nabla f(x)\|^2] \leq \sigma^2$. Suppose now that we run stochastic gradient descent as follows: start with an arbitrary point $x_0 \in \mathbb{R}^d$, and iterate $x_{t+1} = x_t - \eta \nabla g(x_t, \xi_t)$ where ξ_t is sampled from \mathcal{D} , for T steps. Then show that if $\eta \leq \frac{1}{\beta}$, we have

$$\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(x_t)\|^2] \le \frac{2}{\eta} f(x_0) + \beta \eta \sigma^2 T.$$

¹Unless you have an emergency; in that case please write to Satyen as soon as possible.

Using this bound, compute a value of η which ensures that

$$\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(x_t)\|^2] \le O(\beta f(x_0) + \sqrt{\beta f(x_0)\sigma^2 T}).$$

Suppose we output a random iterate, i.e. choose $R \in \{0, 1, 2, \dots, T-1\}$ uniformly at random, and then output x_R . Then conclude that

$$\mathbb{E}[\|\nabla f(x_R)\|^2] \le O\left(\frac{\beta f(x_0) + \sqrt{\beta f(x_0)\sigma^2 T}}{T}\right),$$

where the expectation is over the choice of R as well as $\xi_0, \xi_1, \dots, x_{T-1}$. Using this bound, determine how large T needs to be (in terms of $\epsilon, \beta, f(x_0), \sigma$) to guarantee that $\mathbb{E}[\|\nabla f(x_R)\|^2] \leq \epsilon$ (it is fine to use the $\Omega(\cdot)$ notation in your lower bound on T to suppress numerical constants).