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Stochastic Gradient Descent

1. Stochastic Optimization

Often an optimization problem requires us to find the minimum of an expectation over a dis-

tribution. This is particularly common in Machine Learning algorithms where we are trying

to minimize the expected loss over a distribution (though it is usually estimated using a set of

samples). This optimization objective looks like as given below.

min
x∈K

f(x) = min
x∈K

E
ξ∼D

[
g(x, ξ)

]
In such cases, it is often quite cumbersome to compute the expectation at every descent step.

Each descent step, therefore, is expensive and, henceforth, the convergence process is slow. The

concept behind Stochastic Optimization is to estimate the gradients, i.e. compute stochastic (or

noisy) gradients and take descent steps using these stochastic gradients. The idea of stochastic

optimization originated from Robbins-Monro algorithm and is now the most important opti-

mization method in machine learning.

Before looking at the stochastic gradient descent algorithm, we discuss the formal definition of

stochastic gradients.

Definition 10.1 Stochastic Gradients are noisy gradients that are “unbiased” estimates of the

actual gradients. Formally, the stochastic gradient for the expectation f(x) = E
ξ∼D

[
g(x, ξ)

]
is

given by ∇xg(x, ξ′) where ξ′ is a sample from the distribution D.

By unbiased, we mean that the expectation of the gradient is equal to the actual gradient at

that point. This is trivially true as the gradient is with respect to x and can be propogated into

the expectation term.

2. Stochastic Gradient Descent

The assumption for the optimization problem is that g (which implies f is convex as well) is a

convex function for every ξ and, as asual, K is a convex set. The SGD algorithm for the above

problem is given in algorithm 1.

One thing to note is that because ξt are sampled from D and therefore both ξt and xt are random
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Algorithm 1: Stochastic Gradient Descent

1. Start with an arbitrary point x0 ∈ K

2. For t = 1, 2 . . . T

(a) Draw ξt ∼ D
(b) Set yt = xt−1 − η∇g(xt−1, ξt)

(c) Update xt = ΠK(y)

3. Output the final estimate as some combination of {x0,x1 . . .xT }

variables (for t ≥ 1). However, we can conditionally compute the expectation of the gradient of

g. We can write the following terms based on conditional expectations which will be useful for

the convergence analysis of SGD discussed in later sections.

E
ξ∼D

[
∇g(x, ξ)

]
= ∇f(x)

E
ξ∼D

[
∇g(xt, ξ)

∣∣ ξ0, ξ1 . . . ξt−1 ] = ∇f(xt)

E
ξ∼D

[
∇g(xt, ξ)

∣∣xt ] = ∇f(xt)

E
ξ∼D

[
yt+1

∣∣xt ] = xt − η∇f(xt)

3. Convergence Analysis of SGD

Suppose we have a convex function g which also satisfies the following constraint

∀x ∈ K, E
ξ∼D

[ ∥∥∇g(x, ξ)−∇f(x)
∥∥2
2

]
≤ σ2

This is equivalent to saying that the variance of our unbiased estimator of the gradient i.e. ∇g(x, ξ)

for any x ∈ K is lesser than σ2. Note that because E
ξ∼D

[
∇g(x, ξ)

]
= ∇f(x), we have

E
ξ∼D

[ ∥∥∇g(x, ξ)−∇f(x)
∥∥2
2

]
= E

ξ∼D

[ ∥∥∇g(x, ξ)
∥∥2 ] − ∥∥∇f(x)

∥∥2
2
, and so the above assump-

tion implies that E
ξ∼D

[ ∥∥∇g(x, ξ)
∥∥2 ] ≤ ∥∥∇f(x)

∥∥2
2

+ σ2.

We further assume that the function f is L-Lipschitz. Therefore, we have
∥∥∇f(x)

∥∥ ≤ L for all

x ∈ K.

From the analysis of projected gradient descent, we already know the following result∥∥xt+1 − x∗
∥∥2 ≤ ∥∥xt − x∗

∥∥2 + η2
∥∥∇g(xt, ξt)

∥∥2 − 2η∇g(xt, ξt)
T(xt − x∗)

=⇒ ∇g(xt, ξt)
T(xt − x∗) ≤ 1

2η

(∥∥xt − x∗
∥∥2 − ∥∥xt+1 − x∗

∥∥2)+
η

2

∥∥∇g(xt, ξt)
∥∥2
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Up on taking an expectation conditioned on xt (i.e. E
ξt∼D

[
. . .
∣∣xt ]) on both sides, we get

E
[
∇g(xt, ξt)

T(xt − x∗)
∣∣xt ] ≤ E

[
1

2η

(∥∥xt − x∗
∥∥2 − ∥∥xt+1 − x∗

∥∥2)+
η

2

∥∥∇g(xt, ξt)
∥∥2 ∣∣xt ]

The LHS is simply ∇f(xt)
T(xt − x∗). Also,

∥∥∇g(xt, ξt)
∥∥2 is smaller than

∥∥∇f(xt)
∥∥2 + σ2

which is smaller than L2 + σ2. Hence, we have

∇f(xt)
T(xt − x∗) ≤ 1

2η

(∥∥xt − x∗
∥∥2 − 1

2η
E
[ ∥∥xt+1 − x∗

∥∥2 ∣∣xt ])+
η

2
L2 +

η

2
σ2

From the convexity of f , we have

f(xt)− f(x∗) ≤ ∇f(xt)
T(xt − x∗)

Therefore, we can write

f(xt)− f(x∗) ≤ 1

2η

(∥∥xt − x∗
∥∥2 − 1

2η
E
[ ∥∥xt+1 − x∗

∥∥2 ∣∣xt ])+
η

2

∥∥∇f(xt)
∥∥2 +

η

2
σ2

Taking expectation and averaging over t = 0 to T − 1 on both sides, we get

E

 1

T

T−1∑
t=0

f(xt)

− f(x∗) ≤ 1

2ηT

∥∥x0 − x∗
∥∥2 +

η

2

(
L2 + σ2

)
In order to make the RHS as small as possible, we choose η such that 1

2ηT ‖x0 − x∗ ‖2 =
η
2

(
L2 + σ2

)
. Therefore, we get

η =
‖x0 − x∗ ‖√
T
(
L2 + σ2

)
Also, from the convexity of f , we have 1

T

∑T−1
t=0 f(xt) ≥ f

(
1
T

∑T−1
t=0 xt

)
= f(x̄T ). Therefore, we

can write

E
[
f(x̄T )− f(x∗)

]
=
‖x0 − x∗ ‖

√
L2 + σ2√

T

Notice that we can only comment on the convergence in expectation. Therefore, we are “expect-

ing” our function value to converge to the optimal value. We can also get a high probability

convergence result by bounding the variance. That, however, is outside of the scope of this class.
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