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PROJECTED GRADIENT DESCENT

1 Problem Setup

The optimization problem for stochastic gradient descent is as follows

minimize E¢oplg(z, )]

(1.1)
s.t. T €K, K is convex
1.1 Algorithm
Algorithm 1: SGD
Init: Start with arbitrary =g € K
fort=0,1,2... do
Draw & ~ D
Update ;11 = Ik (21 — nVg(z,&i))
end
return some combination of xg, ...,z
1.2  Assumption
Variance of sgd is bounded
E[|Vg(z,€) — Vf(2)[}3] < o? (1.2)
which is equivalent as
E[[[Vg(z, &% = IVf(@)Il3 < o (1.3)
2 Analysis for L-Lipschitz f
. . . . . . o D .
In the previous lecture, we showed that setting the step size n = T VT we obtain
D+o? + L?
Elf(z)] — f(z*) < ——— 2.1
F@)] - f) < =2 1)

Sanity Check : If g(z,¢) = f(x), then ¢ = 0. We then recover deterministic GD and its

convergence rate.



3 Anadlysis for 5-smooth f

We will only analyze the case when K = R?, so that no projections are necessary. Projections

add a slight extra complication which is handled exactly as in the deterministic case.

Just as in the previous analysis for L-Lipschitz f, we have
Elllzer1 — 27| Plad = |loe — 2|2 + 07 E[|[Vg(2)|P] - ER20Vg(2:)" (20 — 2¥)]

(3.1)
<oy — 2P+ (IVF(@)]? + %) = 20V f (2)" (2 — 2)

By smoothness, we have

F@n) < flae) + V(@) (@1 — o) + ngtJrl — zy||%.

Since x111 = x¢ — N Vg(wt, &) (since we don’t need projections), we have

2
Flre) < Flae) — 19 Fw) Vg, &)+ 2 [ Vgl €)1

Taking expectations on both sides conditioned on z;, we have
B
E[f(@en)led] < f@) =l V@Ol + - (IVF(@)I]* + 0%) 33
3.2
2
o
< fla)) = 2IVF@I? + 5
if we choose n < %

Combining (3.1) and (3.2) and convexity property, we have that
Elf(ze)|ze] = f(27) < Vf(ze)" (2 — 27)
1 * *
< ?n(llxt = 2P+ (IVf (@)l + 0%) = Elllzepr — 27]%|2]) (3.3)

< 27177(”3% — 2| — Ell|zega — 2*[]*[a4))) + f (@) — E[f (mes1)|2e] + 1o

Reorganizing (3.3) above, we have

1 *
BLf (zeg1)]ae] — f(27) < %(th — 2" |]? = ElJzers — 2|[*[a]) + no” (34)
Now taking expectation w.r.t. x; to remove the conditioning, we get

E[f(ze41)] = f(27) < %(E[th = 2*(]’] = El[|wesr — 27(1%]) + 1o

Sum up the term on both sides, we have
=
T D E[f(wi1)] - f(z7) < T(llﬂco —a*||* = Ef|jer — 2*[]*]) + no®
0
< o—=llwo — =

1
B+cVT’

Since we need n < 1, let us set n = where ¢ > 0 to be determined shortly.



Let ||xzg — z*|| = D. Then we have

1= 1
T %:E[f(xtﬂ)] — f(a") < 27;7TH$0 — a*|]* + no?
L B+evD)D? | o? (3.6)

- 2T cvT
BD? D2 o?
-2
2T T T

Therefore, if we set ¢ = %, we can achieve the minimum value for the RHS, which leads to

T—1
Elf(@)] - fl@®) = 7 > E[f(xe1)] — f(z¥)
0 h (3.7)
BD?  Dv2o
<ot T

4 Analysis for a-strongly convex and s5-smooth f

Again we will only look at the unconstrained case, i.e. K = R? so that projections are not

needed. Similarly as above, and using a-strong convexity, we have

F@) = 1) < ol = = Ellrs =" |Ffa) + VSR + %) = Fllee =l (81

=

Blf (@l = £7) < 5o (0= an)ller = a*|[* = 3o Bllovss =" Plad + 30 (42)

Rearranging, and taking expectation w.r.t. x;, we have =
20[E[f (we41)] = f(2")] + Ell |21 — 2*|°] < (1 — an)E[ |z — 2*[]*] + n®o? (4.3)
Since E[f(x¢11)] — f(x*), we have
Ell[zer1 — 2" < (1 — an)E[||x, — «*[]°] + n?a>.
Unrolling the above inequality recursively, we get

E[|[Xr — 2*|]] < (1 = na)" ||z — &*|* + 20°0* (1 + (1 — na) + ... + (1 — )"~ 1)
7]02 (4.4)
< (1—na)" ||z — *||* + o

(To be continued)
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