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Projected Gradient Descent

1 Problem Setup

The optimization problem for stochastic gradient descent is as follows

minimize Eξ∼D[g(x, ξ)]

s.t. x ∈ K, K is convex
(1.1)

1.1 Algorithm

Algorithm 1: SGD
Init: Start with arbitrary x0 ∈ K
for t = 0, 1, 2... do

Draw ξi ∼ D
Update xt+1 = ΠK(xt − η∇g(x, ξi))

end
return some combination of x0, ..., xT

1.2 Assumption

Variance of sgd is bounded

E[||∇g(x, ξ)−∇f(x)||22] ≤ σ2 (1.2)

which is equivalent as

E[||∇g(x, ξ)||2]− ||∇f(x)||22 ≤ σ2 (1.3)

2 Analysis for L-Lipschitz f

In the previous lecture, we showed that setting the step size η = D√
σ2+L2

√
T

, we obtain

E[f(x̄)]− f(x∗) ≤ D
√
σ2 + L2

√
T

(2.1)

Sanity Check : If g(x, ξ) = f(x), then σ = 0. We then recover deterministic GD and its
convergence rate.
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3 Analysis for β-smooth f

We will only analyze the case when K = Rd, so that no projections are necessary. Projections
add a slight extra complication which is handled exactly as in the deterministic case.

Just as in the previous analysis for L-Lipschitz f , we have

E[||xt+1 − x∗||2|xt] = ||xt − x∗||2 + η2 · E[||∇g(xt)||2]− E[2η∇g(xt)
T (xt − x∗)]

≤ ||xt − x∗||2 + η2(||∇f(xt)||2 + σ2)− 2η∇f(xt)
T (xt − x∗)

(3.1)

By smoothness, we have

f(xt+1) ≤ f(xt) +∇f(xt)
>(xt+1 − xt) +

β

2
‖xt+1 − xt‖2.

Since xt+1 = xt − ηt∇g(xt, ξt) (since we don’t need projections), we have

f(xt+1) ≤ f(xt)− η∇f(xt)
>∇g(xt, ξt) +

βη2

2
‖∇g(xt, ξt)‖2.

Taking expectations on both sides conditioned on xt, we have

E[f(xt+1)|xt] ≤ f(x)− η||∇f(xt)||2 +
βη2

2
(||∇f(xt)||2 + σ2)

≤ f(xt)−
η

2
||∇f(xt)||2 +

ησ2

2

(3.2)

if we choose η ≤ 1
β .

Combining (3.1) and (3.2) and convexity property, we have that

E[f(xt)|xt]− f(x∗) ≤ ∇f(xt)
T (xt − x∗)

≤ 1

2η
(||xt − x∗||2 + η2(||∇f(xt)||2 + σ2)− E[||xt+1 − x∗||2|xt])

≤ 1

2η
(||xt − x∗||2 − E[||xt+1 − x∗||2|xt])) + f(xt)− E[f(xt+1)|xt] + ησ2

(3.3)

Reorganizing (3.3) above, we have

E[f(xt+1)|xt]− f(x∗) ≤ 1

2η
(||xt − x∗||2 − E[||xt+1 − x∗||2|xt]) + ησ2 (3.4)

Now taking expectation w.r.t. xt to remove the conditioning, we get

E[f(xt+1)]− f(x∗) ≤ 1

2η
(E[||xt − x∗||2]− E[||xt+1 − x∗||2]) + ησ2

Sum up the term on both sides, we have

1

T

T−1∑
0

E[f(xt+1)]− f(x∗) ≤ 1

2ηT
(||x0 − x∗||2 − E[||xT − x∗||2]) + ησ2

≤ 1

2ηT
||x0 − x∗||2 + ησ2

(3.5)

Since we need η ≤ 1
β , let us set η = 1

β+c
√
T

, where c > 0 to be determined shortly.
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Let ||x0 − x∗|| = D. Then we have

1

T

T−1∑
0

E[f(xt+1)]− f(x∗) ≤ 1

2ηT
||x0 − x∗||2 + ησ2

≤ (β + c
√
T )D2

2T
+

σ2

c
√
T

=
βD2

2T
+
D2c

2
√
T

+
σ2

c
√
T

(3.6)

Therefore, if we set c =
√
2σ
D , we can achieve the minimum value for the RHS, which leads to

E[f(x̄)]− f(x∗) ≤ 1

T

T−1∑
0

E[f(xt+1)]− f(x∗)

≤ βD2

2T
+
D
√

2σ

2
√
T

(3.7)

4 Analysis for α-strongly convex and β-smooth f

Again we will only look at the unconstrained case, i.e. K = Rd, so that projections are not
needed. Similarly as above, and using α-strong convexity, we have

f(xt)− f(x∗) ≤ 1

2η
(||xt − x∗||2 − E[||xt+1 − x∗||2|xt]) +

η

2
(||∇f ||2 + σ2)− α

2
||xt − x∗||2 (4.1)

⇒

E[f(xt+1)|xt]− f(x∗) ≤ 1

2η
(1− αη)||xt − x∗||2 −

1

2η
E[||xt+1 − x∗||2|xt] +

η

2
σ2 (4.2)

Rearranging, and taking expectation w.r.t. xt, we have ⇒

2η[E[f(xt+1)]− f(x∗)] + E[||xt+1 − x∗||2] ≤ (1− αη)E[||xt − x∗||2] + η2σ2 (4.3)

Since E[f(xt+1)]− f(x∗), we have

E[||xt+1 − x∗||2] ≤ (1− αη)E[||xt − x∗||2] + η2σ2.

Unrolling the above inequality recursively, we get

E[||XT − x∗||2] ≤ (1− ηα)T ||x0 − x∗||2 + 2η2σ2(1 + (1− ηα) + ...+ (1− ηα)T−1)

≤ (1− ηα)T ||x0 − x∗||2 +
ησ2

α

(4.4)

(To be continued)
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