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SCRIBE

12
Convergence of SGD - Continued

1. Recap

In this section, we do a quick recap of what Stochastic Gradient Descent (SGD) looks like and

some preliminary results we derived in the previous lecture. The optimization objective is given

as

min
x∈K

f(x) = min
x∈K

E
ξ∼D

[
g(x, ξ)

]
The assumption is that g is a convex function and, as asual, K is a convex set. The SGD

algorithm for the above problem is given in algorithm 1.

Algorithm 1: Stochastic Gradient Descent

1. Start with an arbitrary initial point x0 ∈ K

2. For t = 1, 2 . . . T

(a) Draw ξt ∼ D
(b) Set yt = xt−1 − η∇g(xt−1, ξt)

(c) Update xt = ΠK(y)

3. Output the final estimate as some combination of {x0,x1 . . .xT }

We will only look at the unconstrained case, i.e. K = Rd, so no projections are necessary.

In this setting, for the case when g is smooth with the smoothness coefficient β, we have the

following result which was shown in last lecture in the convergence analysis of SGD with smooth

functions.

Result 12.0.1 For a convex and smooth function f : Rd → R with the smoothness coefficient

β, we have

E
[
f(xt+1

∣∣xt) ] ≤ f(xt)−
η

2

∥∥∇f(xt)
∥∥2 +

η

2
σ2

where η ≤ 1
β and σ2 is the bound for the variance of ∇g(x, ξ)−∇f(x) over ξ ∼ D for all x ∈ K
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where E
ξ∼D

[
g(x, ξ)

]
= f(x), i.e. E

ξ∼D

[ ∥∥∇g(x, ξ)−∇f(x)
∥∥2 ] ≤ σ2 ∀ x ∈ K.

We will assume, for the following sections, that f is convex and the stochastic function g satisfies

for all x ∈ K

E
ξ∼D

[ ∥∥∇g(x, ξ)−∇f(x)
∥∥2 ] ≤ σ2

2. SGD for β-Smooth and α-Strongly Convex Functions

Suppose we have that the function f is both smooth (with coefficient β) as well as strongly

convex (with coefficient α)

Repeating from the previous lectures, we have

E
[
‖xt+1 − x∗ ‖2

∣∣∣xt ] = E
[
‖xt+1 − xt ‖2

∣∣∣xt ]+ ‖xt − x∗ ‖2 + 2E
[

(xt+1 − xt)
T(xt − x∗)

∣∣∣xt ]
= E

ξ

[
η2 ‖∇g(xt, ξ) ‖2

∣∣∣xt ]+ ‖xt − x∗ ‖2 − 2η E
[

(xt − x∗)T∇g(xt, ξ)
∣∣∣xt ]

= η2 E
ξ

[
‖∇g(xt, ξ)−∇f(xt) ‖2 + ‖∇f(xt) ‖2

∣∣∣xt ]+ ‖xt − x∗ ‖2

− 2η E
[

(xt − x∗)T∇g(xt, ξ)
∣∣∣xt ]

≤ η2σ2 + η2 ‖∇f(xt) ‖2 + ‖xt − x∗ ‖2 − 2η(xt − x∗)TE
[
∇g(xt, ξ)

∣∣∣xt ]
= η2σ2 + η2 ‖∇f(xt) ‖2 + ‖xt − x∗ ‖2 − 2η∇f(xt)(xt − x∗) (1)

From strong convexity of f , we have

f(x∗) ≥ f(xt) +∇f(xt)
T(x∗ − xt) +

α

2
‖x∗ − xt ‖2 (2)

Using the above two results (1 and 2), we can write

f(xt)− f(x∗) ≤ 1

2η
(1− ηα) ‖xt − x∗ ‖2 +

η

2
‖∇f(xt) ‖2 +

η

2
σ2 − 1

2η
E
[
‖xt+1 − x∗ ‖2

∣∣∣xt ]
(3)

Looping in result 12.0.1, we can write
η

2
‖∇f(xt) ‖2 ≤ f(xt)− E

[
f(xt+1)

∣∣∣xt ]+
η

2
σ2

Using the above equation and equation 3, we have

E
[
f(xt+1)− f(x∗)

∣∣∣xt ] ≤ 1

2η
(1− ηα) ‖xt − x∗ ‖2 + ησ2 − 1

2η
E
[
‖xt+1 − x∗ ‖2

∣∣∣xt ]
Since the LHS is always non-negative, we have

E
[
‖xt+1 − x∗ ‖2

∣∣∣xt ] ≤ (1− ηα) ‖xt − x∗ ‖2 + 2η2σ2

Taking expectation on both sides, we have

E
[
‖xt+1 − x∗ ‖2

]
≤ (1− ηα)E

[
‖xt − x∗ ‖2

]
+ 2η2σ2
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Applying this inequality recursively, we get

E
[
‖xT+1 − x∗ ‖2

]
≤ (1− ηα)E

[
‖xT − x∗ ‖2

]
+ 2η2σ2

≤ (1− ηα)2E
[
‖xT−1 − x∗ ‖2

]
+ 2η2σ2 + 2η2(1− ηα)σ2

≤ . . .

≤ (1− ηα)TE
[
‖x0 − x∗ ‖2

]
+ 2η2σ2

T−1∑
i=0

(1− ηα)i

= (1− ηα)T ‖x0 − x∗ ‖2 + 2η2σ2 1− (1− ηα)T

1− (1− ηα)

≤ (1− ηα)T ‖x0 − x∗ ‖2 +
2η

α
σ2

Suppose if the point x∗ is a local (or global) minima, then we have ∇f(x∗) = 0 since we

are in the unconstrained setting. Therefore, using smoothness, we can write f(xT ) − f(x∗) ≤
β
2 ‖xT − x∗ ‖2. Therefore, we have

E [ f(xT )− f(x∗) ] ≤ β

2
(1− ηα)T ‖x0 − x∗ ‖2 +

βη

α
σ2

Suppose we set η = log(()T )
αT . Since we require η to be less than 1

β for the result 12.0.1 to hold, we

will assume that T is large enough so that η ≤ 1
β . With this setting of ηs, we get the following

bound

E [ f(xT ) ]− f(x∗) ≤ β

2T
‖x0 − x∗ ‖2 +

βσ2log T
α2T

3. SGD for Strongly Convex and Lipschitz Functions

We can write the same result as equation 1 since no assumptions (sucha as smoothness, strong

convexity, etc.) are required on the function f for that inequality to be true. Moreover, since f

is strongly convex, we can directly use the result in equation 3. Therefore, we have

f(xt)− f(x∗) ≤ 1

2ηt
(1− ηtα) ‖xt − x∗ ‖2 +

ηt
2
‖∇f(xt) ‖2 +

ηt
2
σ2 − 1

2ηt
E
[
‖xt+1 − x∗ ‖2

∣∣∣xt ]
Since the function f is assumed to be L-Lipschitz, we know ‖∇f(x) ‖ ≤ L ∀ x ∈ K. Therefore,

f(xt)− f(x∗) ≤ 1

2ηt
(1− ηtα) ‖xt − x∗ ‖2 +

ηt
2

(
σ2 + L2

)
− 1

2ηt
E
[
‖xt+1 − x∗ ‖2

∣∣∣xt ]
Summing over t = 0 to T − 1 and taking expectation on both sides, we get

E

 T−1∑
t=0

f(xt)− f(x∗)

 ≤ 1

2

(
σ2 + L2

) T−1∑
t=0

ηt +
1

2

(
1

η0
− α

)
‖x0 − x∗ ‖2

− 1

2ηT−1
E
[
‖xT − x∗ ‖2

]
+

T−1∑
t=1

(
1

2

(
1

ηt
− α

)
− 1

2ηt−1

)
‖xt − x∗‖2
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Setting ηt = 1
α(t+1) , then we have

E

 T−1∑
t=0

f(xt)− f(x∗)

 ≤ 1

2

(
σ2 + L2

) T∑
t=1

1

αt

Using the fact that
∑n

i=1
1
i ≤ ln (n) + 1, we have

E

 1

T

T−1∑
t=0

f(xt)− f(x∗)

 ≤ (
σ2 + L2

)
2α

ln (T ) + 1

T

Using the convexity of f , we can say

E [ f(x̄)− f(x∗) ] ≤
(
σ2 + L2

)
2α

ln (T ) + 1

T

Therefore, we ouput x̄ which crudely observes a O
(
1
T

)
bound.
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