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CONVERGENCE OF SGD - CONTINUED

1. Recap

In this section, we do a quick recap of what Stochastic Gradient Descent (SGD) looks like and
some preliminary results we derived in the previous lecture. The optimization objective is given

as

min f(x) = min E [g(x,)]

The assumption is that g is a convex function and, as asual, K is a convex set. The SGD

algorithm for the above problem is given in algorithm 1.

Algorithm 1: Stochastic Gradient Descent

1. Start with an arbitrary initial point x¢ € K
2. Fort=1,2...T

(a) Draw & ~ D

(b) Set, Vi = X¢—1 — nvg(xt—la §t)
(c) Update x; = Ik (y)

3. Output the final estimate as some combination of {xg,x; ...x7}

We will only look at the unconstrained case, i.e. K = R? so no projections are necessary.
In this setting, for the case when ¢ is smooth with the smoothness coefficient 3, we have the
following result which was shown in last lecture in the convergence analysis of SGD with smooth

functions.

Result 12.0.1 For a convex and smooth function f : R? — R with the smoothness coefficient

B, we have

E[ (e |x)] < f0) =3 [| VG |+ 507

where n < % and o2 is the bound for the variance of Vg(x, &) — Vf(x) over £ ~ D for all x € K



where 5I~ED [9(x,8)] = f(x), i.e. [H Vg(x,§) — H } <o’Vxek.

We will assume, for the following sections, that f is convex and the stochastic function g satisfies

forallx e K

E (19966 - V560 [] <

2. SGD for 5-Smooth and «-Strongly Convex Functions

Suppose we have that the function f is both smooth (with coefficient ) as well as strongly

convex (with coefficient «)

Repeating from the previous lectures, we have

E [l —x I %] = E[llxen = xl” [x] + %= %" 124+ 2B [ (01 = x)" (60 = x°)
E |7 || Vg ) |

= 0 E [ [V, &) = Vo) [+ [V FGe) [ 0] + 130 " |

xi | + 1% — x| = 20 B | (x¢ = x")"Vg(xt, €)

— 2 B (x —x") " Vg(x, ) | x|
< a0t [ VL) [P+ 1 = x| = 2n(x — x)"E | Vglxi,€) | x|
= 00 + 07 | V() II° + % = %7 |7 = 20V f () (3 — x7) (1)
From strong convexity of f, we have
Fx7) = flxe) + V(o)™ (X" = x¢) + % 1" = ||” (2)
Using the above two results (1 and 2), we can write

o) = 1) < (0 =n0) =" I+ F 1 VA |2+ 0 = 5B [l = x| [

Looping in result 12.0.1, we can write

g IV §(x) ”2 < flx)—E [f(xt—i-l) ‘Xt} + 302

Using the above equation and equation 3, we have

B[ flen) =16 | x ] < g (Uma) e —x P mo” = B [ —x I <]

Since the LHS is always non-negative, we have

E | xin =% |P [x] < (0= na)llx = x| + 2%

Taking expectation on both sides, we have

Elxi - x"IP] < (1= na)E[lx x| +20%”
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Applying this inequality recursively, we get

E[lxr —x ] < (1=na)E [llxr —x"|*] +27%

< (1-na)’E [H X1 — X" Hﬂ +2n°0” + 20 (1 — na)o?
< .
T-1
< (1= na)"E | |lxo = x*|*| +27%6* 3 (1 — na
i=0
1—(1—na)
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(1= n0)" |20 =" |+ 2P0 T
2
< (1=n)" xo x| + Zlo?
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Suppose if the point x* is a local (or global) minima, then we have Vf(x*) = 0 since we

are in the unconstrained setting. Therefore, using smoothness, we can write f(xr) — f(x*) <

g | x7 — x* ||%. Therefore, we have

E[f(xr) = f(x)] < S(1=na)" [x0 - x" I +

®

o
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log(()T)
aT

Suppose we set n = . Since we require 7 to be less than % for the result 12.0.1 to hold, we

will assume that 7' is large enough so that n < % With this setting of s, we get the following
bound
g

E[fGxr)] - f(x) = oF 10 — x*||* +

Bo?log T
2T

3. SGD for Strongly Convex and Lipschitz Functions

We can write the same result as equation 1 since no assumptions (sucha as smoothness, strong
convexity, etc.) are required on the function f for that inequality to be true. Moreover, since f

is strongly convex, we can directly use the result in equation 3. Therefore, we have

Foe) = F6) < g =ma) e =" I+ G VTG I+ o = B [ = |

Since the function f is assumed to be L-Lipschitz, we know || Vf(x) || < LV x € K. Therefore,

Foe) = £ < g =ma) e =P 4 5 (084 27) = 5B [l x| s

Summing over ¢t =0 to T — 1 and taking expectation on both sides, we get

T-1 1 ) ) T-1 1 1 )
B3 s~ f) | < 5 (o 22) St g (o —a) o]
t=0 t=0




Setting 1, = ﬁ, then we have
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Using the fact that >°7 ; + <In(n) + 1, we have

o] — (02 + L) In(T) + 1

T ) - f6) | < TR

t=0

Using the convexity of f, we can say
_ § o2+ L) In(T) + 1
B8 - f6c)] < L) D)

2 T

Therefore, we ouput X which crudely observes a O (%) bound.
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