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Reducing the Variance of Stochastic Gradients

1. Finite Sum Minimization

min
x∈Rd

f(x) =
1

n

n∑
i=1

gi(x)

where we assume the functions gi are α−strongly convex and β-smooth.

Vanilla gradient descent for this looks like the following

xt+1 = xt − η
1

n

n∑
i=1

∇gi(xt)

With the above approach, we get ε-suboptimality in O
(
β
α log

(
βD2

2ε

))
iterations. However, since

we have n gradient evaluations in each iteration, each iteration is expensive.

We can view the same problem in the following way, however.

min
x∈Rd

f(x) = E
i∼[n ]

[
gi(x)

]
We use Stochastic Gradient Descent to get to the solution. In that case, we now needO

(
β(D2+σ2/α2)

ε

)
iterations1 to converge with ε-suboptimality. Even though the number of iterations increase by a

huge factor, we only require one gradient computation in each iteration. As the sizes of datasets

increase, the complexity of each iteration of full-batch gradient descent increases linearly. In

such cases, stochastic gradient can perform much better.

However, SGD can often have very high variance σ which slows down converge. In order to find

an optimal point between the low number of iterations in GD and the low cost of one iteration

in SGD, we attempt to reduce the variance of each SGD step by using a lower variance estimator

for the function f(x). This is given as

f(x) = E
{i}∼[n ]

 k∑
r=1

gir(x)


1We are ignoring a log (1/ε) factor here since it is a lower order term.
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2. Lower Variance SGD using SAG

The problem with SGD is that we only use one function gi out of the the n functions in each

iteration which causes high variance gradient estimates. Stochastic Averaged Gradients (SAG)

tries to lower the variance of each estimate without increasing the number of gradients used per

iteration but only computing 2 gradients per iteration. This is achieved by book-keeping the

previous gradient estimates and updating these estimates to be closer to the current data points.

The algorithm for SAG is given in algorithm 1.

Algorithm 1: Stochastic Averaged Gradients

1. Maintain, for ever i ∈ [n ], the last computed gradient for gi

2. Define L(i) = maxs<t
{
s
∣∣ i was sampled in iteration s

}
3. Sample it ∼ [n ]

4. Update

xt+1 = xt −
η

n

∇git(xt)−∇git (xL(it))+ n∑
i=1

∇gi(xL(i))


5. Set L(it) = t and save the gradient ∇git(xt) for it.

Even though the variance of the gradient estimator is, in general, lower in SAG, the gradient

estimator is biased. This can be easily analyzed by taking an expectation of the gradient

estimator. That is, we have

E
it∼[n ]

 1

n

∇git(xt)−∇gi(xL(it)) + n∑
i=1

∇gi(xL(i))

 ∣∣ i0, i1 . . . it−1
 6= ∇f(x)

Although this seems problematic for showing the convergence of the descent algorithm, the

inventors of the SAG algorithm were able to prove the following the convergence bound:

E
[
f(xT )− f(x∗)

]
≤

(
1−min

{
α

16β
,
1

8n

})T [
3

2
(fx0 − f(x∗)) +

4β

n
D2

]

Therefore, in order to achieve ε-suboptimality, we would need O

(
log( 1

ε )
min

{
α

16β
, 1
8n

}
)
. Hence, we have

T = O

(
max

{
16β

α
, 8n

}
log
(
1

ε

))

= O

((
16β

α
+ 8n

)
log
(
1

ε

))
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This also equals (up to a factor of 2) the number of gradient evaluations. This represents a

significant improvement over full-batch gradient descent or SGD, in cases when the condition

numnber β
α is large.

3. SAGA

SAGA improves upon SAG by changing the gradient estimator in order to make it unbiased.

The estimator used by SAGA is as follows

∇f(x) = E
it∼[n ]

∇git(xt)−∇gi(xL(it)) + 1

n

n∑
i=1

∇gi(xL(i))
∣∣ i0, i1 . . . it−1


One can understand SAGA as fixing the bias of SAG gradients by subtracting the expected

value of the gradients therefore making it unbiased. SAGA affords a slightly better convergence

rate than SAG. Similar to SAG, for strongly convex and smooth subfunctions, SAGA attains

ε-suboptimality in O
((

3β
α + 4n

)
log
(
1
ε

))
iterations

4. Stochastic Variance Reduced Gradients

Stochastic Variance Reduced Gradients (SVRG) is yet another approach to gradient descent for

finite sum minimizations. We study this because it’s easier to analyse the convergence of SVRG

over SAG and SAGA.

Algorithm 2: Stochastic Variance Reduced Gradients

1. Start with arbitrary x
(0)
0

2. For k = 0, 1 . . .K − 1

(a) Set x0 = x
(k)
0 , compute ∇f(x0) =

1
n

∑n
i=1∇gi(x0)

(b) For t = 0, 1 . . . T − 1, update
xt+1 = xt − η

(
∇gi(xt)−∇gi(x0) +∇f(x0)

)
(c) Set x(k+1)

0 = 1
T

∑T
t=1 xt

3. Output x(K)
0 .
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