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16
Wrap-up Analysis of SVRG and Frank-Wolfe Algorithm

In this lecture, we first wrap up the analysis of SVRG. Then we introduce the Frank-Wolfe

algorithm.

1. Wrap up Analysis of SVRG

In the last lecture, we arrived at
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where we fix epoch k (i.e. condition on x0). This leads to
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where the last inequality follows from f(x0)− f(x∗) ≥ α
2 ‖x0 − x∗ ‖2 by α-strong convexity. On

the other hand, by Jensen’s inequality,
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conditioning on x0, we have
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By choosing η = 1

β and T = 40β
α , we obtain
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This leads to
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Then we have
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Notice that f(x∗) is unknown in general. We can replace f(x∗) with a known lower bound of it

in the above equation. The first-order complexity of SVRG is
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.

2. Frank-Wolfe Algorithm

Recall the following convex optimization problem

min f(x)

s.t. x ∈ K

where f : Rd → R is convex and K is a convex set of Rd. We have learned how to use projected

gradient descent to solve this problem. Although calculating the projection onto l2 ball or l∞
ball is easy due to the closed-form solution, it is in general computationally hard. Instead, we

can replace the projection with the so-called linear optimization (LP) oracle: given v ∈ Rd,
finds argmaxx∈Kv>x. Generally, the LP oracle is computationally easier to implement than a

projection oracle, expecially when K is a polytope. Based on LP oracle, we can propose the

Frank-Wolfe algorithm, which is also called conditional gradient method.

Algorithm 1: Frank-Wolfe Algorithm/Conditional Gradient Method

1. Start with arbitrary x0 ∈ K

2. For t = 0, 1, . . . , T − 1 . . .

(a) Compute vt = argmaxx∈K −∇f(xt)>x

(b) xt+1 =
2
t+2vt +

(
1− 2

t+2

)
xt

3. Output xT
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