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ANALYSIS OF THE FRANK-WOLFE ALGORITHM

In this lecture, we analyze the Frank-Wolfe algorithm, which is also called conditional gradient

method.

1. Start with arbitrary xg € K
2. Fort=0,1,..., T —1...

(a) Compute yti1 = argmax,cx — Vf(x¢) ' x
(b) Xt11 = Myes1 + (1 — ) x¢

3. Output xp

Algorithm 1: Frank-Wolfe Algorithm/Conditional Gradient Method

One great property of this algorithm is that {x;} is always inside K. Now we analyze this

algorithm.

Theorem 17.1 Let f be a convex and S-smooth function, and diam(K) < D. If \; = 25, Vt,

then
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fxe) — f(x) < vt > 1.

Proof. First we have
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where the second to last inequality uses the optimality of y;+1 and the last inequality just follows

from the convexity of f. This leads to

F(xa1) — F) < (1= A)(F(xe) — Fx)) + 2

§A§D2.

(1)



Now we are ready to prove the main claim by induction. When t = 1, we have \g = 25 =

0+2 ’
and then
Flx1) = Jx) < (1= M) xo) — F(x) + 203D = 0 < g2,
Suppose the claim holds for ¢. Then for ¢ 4+ 1, we have
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f(xep1) = f(x7) < (1= A)(f(xe) — f(x7)) + 5)\5172
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This completes the proof. ]

This result shows that the Frank-Wolfe algorithm achieves the same convergence rate as pro-
jected gradient descent. The output of the Frank-Wolfe algorithm has some kind of sparsity

structure. For example, let K be the simplex of distributions, i.e,

X : in:L z; > 0,Vi € [d]

Given v,
argmax, KV X =g
where e; is the standard basis vector where ¢ = argmax;c[gv;. Then the Frank-Wolte algorithm

over K performs similarly as the coordinate descent algorithm.



