
Columbia University in the City of New York
Optimization Methods for Machine Learning
Instructors: Satyen Kale
Authors: Victor Ye Dong
Email: yd2470@columbia.edu

SCRIBE

18
Accelerated Gradient Descent

1 Problem Setup

We remmember from the previous classes that to solve the following problem

min f(x)

s.t x ∈ Rd
(1.1)

and assume f(x) is β-smooth, define D = ||x0 − x∗|| gradient descent can achieve a convergence rate
of O(βD2/T) and the Frank-Wolfe method also achieves the same convergence rate. This convergence
rate is not the optimal one for first order methods, however. The optimal rate is achieved by Accelated
Gradient Descent, invented by Nesterov in the 80’s, which we will describe now.

From the analysis of gradient descent for β-smooth functions with step size 1
β we have, in any round t:xt+1 = xt − 1

β∇f(xt)

f(xt+1) ≤ f(xt)− 1
2β ||∇f(xt)||2

(1.2)

then if ∇f(xt) is large, the reduction will be large.

On the other hand, basic gradient analysis with step size η, gives us
T−1∑
t=0

f(xt)− f(x∗) ≤ η

2

T−1∑
t=0

||∇f(xt)||2 +
D2

2η
(1.3)

then if ∇f(x) is small, then the RHS will be small.

Of course both the above methods use different step sizes, and it’s not clear which step size to use a
priori. Thus, we want to come up with some method that blends the two methods. This is Nesterov’s
Accelerated Gradient Descent method, given below. Instead of one sequence of iterates xt, it uses three
sequences of points. The additional sequences are denoted yt and zt. The yt sequence is updated using
the step size 1

beta , and the zt sequence is updated using the step size η. xt is obtained by taking a convex
combination of the yt and zt sequences with a mixing parameter τ . The values of all of these parameters
will be revealed in the analysis.

Algorithm 1: AGD

Start with arbitrary x0 = y0 = z0. for t = 0, 1, 2,. . . , T-1 do
yt+1 = xt − 1

β∇f(xt)

zt+1 = zt − η∇f(xt)

xt+1 = τzt+1 + (1− τ)yt+1, (⇔ zt+1 = 1
τ (xt+1 − (1− τ)yt+1)

end
Output XT

1

2 Algorithm Analysis

||zt+1 − x∗||2 = ||zt − η∇f(xt)− x∗||2

= ||zt − x∗||2 + η2||∇f(xt)||2 − 2η∇f(xt)(zt − x∗)
(2.1)

⇒
2η∇f(xt)(zt − x∗) ≤ ||zt − x∗||2 − ||zt+1 − x∗||2 + η2||∇f(xt)||2

≤ ||zt − x∗||2 − ||zt+1 − x∗||2 + 2η2β(f(xt)− f(yt+1))
(2.2)

⇒
2η(f(xt)− f(x∗)) ≤ 2η∇f(xt)(xt − x∗)

≤ ||zt − x∗||2 − ||zt+1 − x∗||2 + 2η2β(f(xt)− f(yt+1)) + 2η∇f(xt)(xt − zt)
(2.3)

Using the definition of zt and convexity of f , we get

∇f(xt)(zt − xt) = ∇f(xt)(
1− τ
τ
· (yt − xt))

≤ 1− τ
τ
· (f(yt)− f(xt))

(2.4)

⇒

2η(f(xt)− f(x∗)) ≤ ||zt − x∗||2 − ||zt+1 − x∗||2 + 2η2β(f(xt)− f(yt+1)) + 2η∇f(xt)(
1− τ
τ
· (f(yt)− f(xt)))(2.5)

If we set ηβ = 1−τ
τ ⇒ τ = 1

1+ηβ then (2.5) becomes

2η(f(xt)− f(x∗)) ≤ ||zt − x∗||2 − ||zt+1 − x∗||2 + 2η2β(f(yt)− f(yt+1)) (2.6)

⇒

2ηT (f(x̄)− f(x∗)) ≤
T−1∑
t=0

2η(f(xt)− f(x∗))

≤
T−1∑
t=0

||zt − x∗||2 −
T−1∑
t=0

||zt+1 − x∗||2 +

T−1∑
t=0

2η2β(f(yt)− f(yt+1))

≤ ||x0 − x∗||2 + 2η2β(f(x0)− f(x∗))

(2.7)

⇒

f(x̄)− f(x∗) ≤ 1

2ηT
(||x0 − x∗||2) +

ηβ

T
(f(x0)− f(x∗)) (2.8)

Now suppose we know an upper bound on the initial suboptimality gap: f(x0)− f(x∗) ≤ 4, then

f(x̄)− f(x∗) ≤ D2

2ηT
+
ηβ4
T

(2.9)

Letting η = D
√

1
24β , we have

f(x̄)− f(x∗) ≤ D
√

2β4
T

(2.10)

Choose T ≥ 8βD2

4 , we can achieve

D

√
2β4
T
≤ 4

2
(2.11)

2

So in the suboptimality gap drops to half of what it was initially. Now suppose we restart AGD with xT
as the initial point, and run it for 8βD2

4/2 steps, then the gap decreases to 4/4. Repeating this restarting
process to get the gap down to ε, the number of iterations needed is√

8βD2

4
+

√
8βD2

4/2
+

√
8βD2

4/4
+ . . . ,

√
8βD2

ε
= O

(√
βD2

ε

)
.

Thus, the first order complexity of this restarted AGD method to get optimization error at most ε is

O
(√

βD2

ε

)
, which is significantly faster than either vanilla gradient descent or the Frank-Wolfe method.

If that the function f is α-strongly convex in addition to being β-smooth, then

AGD achieves errorO(e−
√

α
β T) after T gradient calls⇒ to get ε suboptimality gap we needO(

√
β
α log

(
1
ε

)
)

gradient calls (note that this bound ignores some lower order logarithmic dependence on D2). This analy-
sis is based on bootstrapping the previous analysis and can be found in CMH [https://ee227c.github.

io/notes/ee227c-lecture08.pdf section 8.2].

In contrast, GD achieves error O(e−
α
β T) after T gradient calls ⇒ to get ε suboptimality gap we need

O(βα log
(
1
ε

)
) gradient calls.

3

https://ee227c.github.io/notes/ee227c-lecture08.pdf
https://ee227c.github.io/notes/ee227c-lecture08.pdf

	Problem Setup
	Algorithm Analysis

