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Analysis of Mirror Descent

1 Basic Notions

Mirror descent is a generalization of GD. The method is adapted to a norm ‖ · ‖ on Rd that

is appropriate to the geometry of the problem. The problem we want to solve is minx∈K f(x),

where f is a convex function and K is a convex set as usual. The difference from standard GD

is that we now impose bounds on K and the gradients of f using a (potentially non-Euclidean)

norm ‖ · ‖ and its dual norm ‖ · ‖∗ (definition to follow). The dual norm is defined on the dual

vector space (i.e. the vector space of all linear functionals on the original vector space). The

finite dimension Euclidean space Rd is self-dual; i.e. the dual is also Rd, so for the purpose of

this lecture, we won’t need to worry about vector space duality.

Definition 1 (Dual Norm).

‖x‖∗ = sup
‖v‖≤1

|x · v| = sup
v 6=0

|x · v|
‖v‖

(1.1)

Example 1: Dual norm for `2 is `2 :

‖x‖2 = sup
‖v‖2≤1

|x · v| (1.2)

⇒

v∗ =
x

‖x‖2
⇒ |x · v| = ‖x‖

2
2

‖x‖2
= ‖x‖2 (1.3)

Example 2 : Dual norm of `p is `q where 1
p +

1
q = 1. Interesting dual pairs are (2, 2) and (1,∞),

which will be our main focus below.

Fact : For x ∈ v, y ∈ v∗, x, y ∈ Rd,

|x · y| ≤ ‖x‖‖y‖∗ generalized Cauchy-Schwartz (1.4)

Definition 2 (Mahalanobis Distance(Generalization of `2 norm)). If A � 0, ‖x‖A =
√
xTAx =

‖A
1
2x‖2

Fact :

‖x‖A, ∗ = ‖x‖A−1 =
√
xTA−1x (1.5)
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2 Mirror Map and Bregman divergence

In order to define mirror descent, we need two notions: mirror map and Bregman divergence.

Definition 3. For an open set U ⊆ Rd, the function φ : U → R is mirror map if

a. φ : 1 - strongly convex in ‖ · ‖ norm.

φ(x′) ≥ φ(x) +∇φ(x)(x′ − x) + 1

2
‖x− x′‖2 (2.1)

b. ∇φ: U → Rd surjective (or in other words, the inverse function [∇f ]−1 : Rd → U is well-

defined).

c. ‖∇φ(x)‖ → ∞ when x→ ∂U

We mainly discuss two cases in the following analysis,

1) For the `2 norm case, consider φ(x) = 1
2‖x‖

2 defined on U = Rd. Then we have ∇φ(x) =

x,∇2φ(x) = I, so φ is indeed a valid mirror map for the `2 norm.

2) For the `1 norm case, let U = {x ∈ Rd|xi > 0∀i}, and define φ(x) =
∑

i xilog (xi), the

negative entropy function. Then ∇φ(x) = log (xi) + 1. It is easy to check that ∇φ is surjective:

given a vector v ∈ Rd, if we define

xi = evi−1 (2.2)

then ∇φ(x) = v. The strong convexity of φ(x) follows from Pinsker’s inequality.

Definition 4 (Bregman Divergence). For a convex function φ : U → R, the Bregman divergence

between a pair of points x, x′ ∈ U is defined as

Bφ(x
′, x) = φ(x′)− (φ(x) +∇φ(x) · (x′ − x)) (2.3)

The Bregman divergence Bφ(x′x) measures how much φ(x′) diverges from the linear approxi-

mation to φ at x. Note that the Bregman divergence is not symmetric between x and x′, so the

order of the arguments matters.

For the `2 norm, using the mirror map φ(x) = 1
2‖x‖

2
2, we have

Bφ(x
′, x) =

1

2
‖x′‖2 − (

1

2
‖x‖2 + x(x′ − x))

=
1

2
‖x− x′‖2

(2.4)

For the `1 case, using the mirror map φ(x) =
∑

i xilog (xi), we have

Bφ(x
′, x) =

∑
i

x′ilog
(
x′i
)
− (
∑
i

xilog (xi) + (
∑
i

log (xi) + 1)(x′i − xi))

=
∑
i

x′ilog
(
x′i
xi

)
−
∑
i

(x′i − xi)
(2.5)

Note that in the special case when x and x′ are distributions over the d coordinates (i.e.
∑

i xi =∑
i x
′
i = 1) the Bregman divergence becomes exactly the Kullback-Leibler (KL) divergence, or
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relative entropy, between x′ and x, since the term
∑

i(x
′
i − xi) vanishes.

3 Mirror Descent

Mirror descent is an elegant method to exploit the geometry of the problem when the geometry

is best described by some (not necessarily Euclidea) norm ‖ · ‖. Suppose now that we are given

constants D > 0 and L > 0 such that ‖x‖ ≤ D and ‖∇f(x)‖∗ ≤ L for all x ∈ K (here, we are

interpreting ∇f(x) as a member of the dual to Rd). The algorithm is given below. In words,

the algorithm uses a mirror map φ adapted to the norm ‖ · ‖ to map the current iterate xt
into the dual space as ∇φ(xt). This is the same space that the gradient ∇f(xt) lives in, so

we can take a gradient descent step in the dual step as ∇φ(xt) − η∇f(xt). To map this back

to the primal space where the x’s live, we apply the inverse mirror mapping, i.e. we compute

yt+1 = [∇φ]−1(∇φ(xt)−η∇f(xt)). This point may not lie in K, so to bring the new iterate back

into K, we perform a projection: here the appropriate projection is the Bregman projection, i.e.

we compute xt+1 = argminx∈K Bφ(x, yt+1).‘

Algorithm 1: Mirror Descent
Start with an arbitrary x0 ∈ K.

for t = 0, 1, 2, . . . , T do
yt+1 = [∇φ]−1(∇φ(x)− η∇f(xt))
xt+1 = argminx∈K Bφ(x, yt+1)

end

Output 1
T

∑T−1
i=1 xi

4 Instantiating the algorithm for various special cases

For the `2 norm case, it is easy to check that mirror descent reduces exactly to standard projected

gradient descent.

For `1 norm case, we have φ(x) =
∑

i xilog (xi), for which

∇φ(x) = 〈log (xi) + 1〉di=1 and [∇φ]−1(v) = 〈evi−1〉di=1

Thus, we have

yt+1,i = exp(log
(
xt,i
)
+ 1− η∇f(xt)i − 1)

= exp(log
(
xt,i
)
− η∇f(xt)i)

= xt,i · exp(−η∇f(xt)i).

(4.1)

Then, to compute

xt+1 = argmin
x∈K

Bφ(x, yt+1) (4.2)

one can check (via Lagrange multipliers) that the Bregman projection amounts to re-normalizing

yt+1 so that the coordinates sum to 1, i.e. xt+1 =
yt+1

‖yt+1‖1 .
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