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ANALYSIS OF THE MIRROR DESCENT ALGORITHM

In this lecture, we analyze the mirror descent algorithm.

Algorithm 1: Mirror Descent

1. Start with arbitrary xg € K
2. Fort=0,1,...,T —1,

(a) Set yer1 = [Vg] ! (Vo(xi) =0V f(xt))
(b) Set x;41 = argmingex By (X, y+1)

3. Output X = 7 ) ;5 X¢

Assume we have the following

e Norm || -|| on R?

e Vo :U — R? is surjective

L-strong convexity: ¢(y) > ¢(x) + Vo(x) - (y —x) + 3 ||y — x|
Bregman divergence: By(y,x) = ¢(y) — (¢(x) + Vo(x) - (y — x))

Gofl, <L

VX,X’EK,HX—X’HSD

With these, we begin to analyze the mirror descent algorithm.

By(x",yt+1) = ¢(x*) — d(yi+1) — Vo(yet1) - (X — yis1)
= ¢(x") — o(xt) + d(xt) = d(yt+1) — VO(yes1) - (X" — %t + X — yeq1)
= ¢(x*) — d(x¢) — Vo(yiq1) - (x* —x¢) + Bg(xt — yis1)
= ¢(x") = B(x1) = (Vo(xs) =V f(x1)) - (X" = %) + By (s, y1+1)
= By(x",x¢) + By (e, ye41) + 0V f(xe) - (X* = xy) (1)

1



Lemma 21.0.1 B¢(X*,Xt+1) < B¢(x*,yt+1).

Proof.

By(x", yt+1) — Bo(x", x¢41) = ¢(xe41) — ¢(ye1) — VO(yer1) - (X7 — yeq1) + VO(xeq1) - (X7 — Xp41)
= By(Xt4+1, Yt+1) + (VO (xt41) — VA(yi41)) (X" — X¢41)
> (Vo(xi11) = Vo(yes1)) - (x5 — xeq1)

Notice that Bg(x,y:+1) is convex in x. Since x4y1 = arg mingex By(X,yi+1), by the first order

optimality condition, we have
Vix=xis1Bg - (X, ¥141) (X" —x¢41) 2 0 <= (Vo(x441) — Vo(yir1)) - (X* —x441) 20

This completes the proof. ]

Lemma 21.0.2 By(xi,yi+1) < % || V£ (x:) >

Proof.

By(xt, yt41) + Bo(yee1,%t) = (VO(xt) = Vo (yit1)) - (x¢ — yes1)
=nVf(xt) - (%t — yit1)
< H nV f(xt) H* | %t — yit1 ||

2 2
< |7V f(xe) || + 1% = yes |
- 2
where the first inequality uses the Cauchy—Schwarz inequality, and the last inequality follows

from the AM—GM inequality. Notice that by 1-strongly convexity of ¢,

2
By(yiss, x)) > !Yt+12><t|!

This completes the proof. ]

With these lemmas, Equation (1) leads to

2
By (x", x¢41) < By(x*,x¢t) + % | V£ () Hi 0V f(xe) - (x5 = x¢).

Then we have
T—1 n? T—1

nzﬁwm<Mﬂw<m@xO+fZWW&H
t=0
Notice that

T-—1
LHS > 3 (f(x) — f(x")) = Tf(%) — Tf(x")

t=0
where the first inequality uses the convexity of f and the other one follows from the Jensen’s

inequality. Hence,

_ * Bd)(X XO 2 B¢(X X()) 77L2 2B¢(X*,X0)L2
O ZHfot L -
by letting n = w. Indeed By(x*,%0) is unknown, we need to derive an upper bound

of it with a particular choice of xo. Let xg £ argminyecx ¢(x). By the first order optimality



condition,

Vo(xo) - (x* —x0) >0,

and then
By(x",x0) = ¢(x") = ¢(x0) = V(o) - (X" — X0) < ¢(x") — d(x0) < max $(x) — min ¢(x).
0.1 /1 Case

When minimizing a function f over the simplex Ay, we can choose the negative entropy function

as the mirror map, i.e.,

d
$(x) =D wilog ().
i=1
It is easy to check this mirror map satisfies the conditions required by the above result. Since
maxxea, ¢(x) — mingeca, ¢(x) = log (d), the mirror descent algorithm achieves a rate of conver-

gence of order 4/ %, while the (projected) gradient descent algorithm only has a rate of order

d - .
7 n this case.

0.2 AdaGrad

The idea of mirror descent is also used to design the so-called AdaGrad algorithm. The suggested
reading CEH [Chapter 6] covers AdaGrad in detail (this is outside the syllabus for the final exam

however).
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