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Newton’s Method

In this lecture, we study the Newton’s method over K = Rd.

Algorithm 1: Newton’s Method

1. Start with arbitrary x0

2. For t = 0, 1, . . . , T − 1,

(a) Compute λ(xt) = ∇f(xt)>∇2f(xt)
−1∇f(xt).

(b) If λ(xt) ≥ α4

βγ2
, then set ηt = α

β , else set ηt = 1.

(c) Set xt+1 = xt − ηt∇2f(xt)
−1∇f(xt)

3. Output xT

The standard Newton’s method uses no step sizes (i.e. ηt = 1 for all t. However, this can be

shown to converge only when x0 is very close to the optimal point x∗. To fix this issue we add a

step size in the above algorithm. This step size is determined based on the value of the so-called

Newton decrement, i.e. λ(xt) := ∇f(xt)>∇2f(xt)
−1∇f(xt). If λ(xt) ≥ α4

βγ2
, (definitions of

α, β, γ to follow), then we set ηt = α
β , else we set ηt = 1.

To analyze the algorithm, we need to make the following assumptions.

1. f is α-strongly convex and β-smooth.

2. ∇2f is γ-Lipschitz, i.e., ∥∥∥∇2f(x)−∇2f(x′)
∥∥∥ ≤ γ ∥∥x− x′

∥∥
The matrix norm on the LHS is the spectral norm.
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1. Analysis

By β-smoothness,

f(xt+1) ≤ f(xt) +∇f(xt)>
(
−ηt∇2f(xt)

−1∇f(xt)
)
+
β

2
η2t

∥∥∥∇2f(xt)
−1∇f(xt)

∥∥∥2
= f(xt)− ηt∇f(xt)>∇2f(xt)

−1∇f(xt) +
β

2
η2t∇f(xt)>∇2f(xt)

−2∇f(xt)

≤ f(xt)− ηt∇f(xt)>∇2f(xt)
−1∇f(xt) +

β

2α
η2t∇f(xt)>∇2f(xt)

−1∇f(xt)

= f(xt)− ηtλ(xt) +
β

2α
η2t λ(xt)

where λ(xt) , ∇f(xt)>∇2f(xt)
−1∇f(xt) and the last inequality follows from ∇2f(xt)

−1 � 1
αI

due to α-sc. By choosing ηt = α
β , we have

f(xt+1) ≤ f(xt)−
α

2β
λ(xt). (1)

In addition,

λ(xt) = ∇f(xt)>∇2f(xt)
−1∇f(xt) ≥

1

β

∥∥∇f(xt)∥∥2 ≥ α2

β

∥∥xt − x∗
∥∥2 (2)

where the first inequality uses ∇2f(xt)
−1 � 1

β I due to β-smoothness and the other inequality

follows from
∥∥∇f(xt) ∥∥ =

∥∥∇f(xt)−∇f(x∗) ∥∥ ≥ α ‖xt − x∗ ‖ due to α-sc.

Depending on the value of λ(xt), the analysis of the algorithm factors neatly into two cases. In

the first case, when the iterates xt are far from the optimal point x∗, then λ(xt) is large (at

least α4
βγ2

) and then we set ηt = α
β . This is called the damped Newton phase of the algorithm

since the Newton step ∇2f(xt)
−1∇f(xt) is damped by a factor of α

β before doing the update.

We will show in the analysis that the damped Newton phase lasts for only a constant number

of steps. Then, xt becomes close enough to x∗, at which point λ(xt) becomes small enough so

that ηt = 1. This is called the quadratically convergent phase since at this points the algorithm

converges doubly exponentially fast to the optimum point: i.e. in order to reach ε suboptimality,

we need only O(log(log(1ε ))) steps in this phase. The detailed analysis follows.

1. Damped Newton phase. If λ(xt) ≥ α4

βγ2
, we set ηt = α

β .

By Equation (1),

f(xt+1) ≤ f(xt)−
α5

2β2γ2

Thus, the function value reduces by a constant amount, α5

2β2γ2
, for each iteration in this

phase. Thus, the number of iterations in this phase is bounded by 2β2γ2(f(x0)−f(x∗))
α5 .

Typically, we have a finite lower bound on f(x∗) (generally, this lower bound is just 0) so

this bound on the number of iterations in this phase of the algorithm is just a constant.

2. Quadratically convergent phase. If λ(xt) < α4

βγ2
, we set ηt = 1.

By Equation (2), ∥∥xt − x∗
∥∥ < α

γ
.
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Notice that

xt+1 − x∗ = xt − x∗ −∇2f(xt)
−1∇f(xt)

= ∇2f(xt)
−1
[
∇2f(xt)(xt − x∗)−∇f(xt)

]
= ∇2f(xt)

−1

[
∇2f(xt)(xt − x∗)−

∫ 1

u=0
∇2f(x∗ + u(xt − x∗))(xt − x∗)du

]

= ∇2f(xt)
−1
∫ 1

u=0

[
∇2f(xt)−∇2f(x∗ + u(xt − x∗))

]
(xt − x∗)du

The penultimate equality follows using ∇f(xt) =
∫ 1
u=0∇

2f(x∗+u(xt−x∗))(xt−x∗)du by

the fundamental theorem of calculus. This in turn is based on the fact that d[∇f(x
∗+u(xt−x∗))]
du =

∇2f(x∗ + u(xt − x∗))(xt − x∗) by the chain rule. Now we can upper bound ‖xt+1 − x∗ ‖,
by using the Cauchy-Schwarz inequality, the sub-multiplicativity of the spectral norm of

matrices, and subadditivity of the `2 norm on the RHS as follows:∥∥xt+1 − x∗
∥∥ ≤ ∥∥∥∇2f(xt)

−1
∥∥∥∥∥xt − x∗

∥∥∫ 1

u=0

∥∥∥∇2f(xt)−∇2f(x∗ + u(xt − x∗))
∥∥∥du

≤ 1

α

∥∥xt − x∗
∥∥∫ 1

u=0
γ
∥∥xt − (x∗ + u(xt − x∗)

∥∥du
=

1

α

(∫ 1

u=0
γ(1− u)du

)∥∥xt − x∗
∥∥2

=
γ

2α

∥∥xt − x∗
∥∥2

where the second inequality follows from ∇2f(xt)
−1 � 1

α and Assumption 2.

Now, let t0 be the first time step at which λ(xt0) <
α4

βγ2
. By the analysis of the damped

Newton phase, we have t0 ≤ 2β2γ2(f(x0)−f(x∗))
α5 . We have ‖xt0 − x∗‖ ≤ α

γ . By a simple

induction using the analysis above, we can show that for any s ≥ 0, we have

‖xt0+s − x∗‖ ≤ α

γ
·
(
1

2

)2s−1
.

Thus, to reach a point xt such that ‖xt−x∗‖ ≤ ε, we need log2(log2(
2α
γε )) iterations in this

phase

So overall, we need at most

2β2γ2(f(x0)− f(x∗))
α5

+ log2

(
log2

(
2α

γε

))
iterations of Newton’s algorithm. This convergence rate is significantly faster than any variant

of gradient descent we have studied in class.
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