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NEWTON'S METHOD

In this lecture, we study the Newton’s method over K = R

Algorithm 1: Newton’s Method

1. Start with arbitrary xq

2. Fort=0,1,...,T —1,
(a) Compute A(x;) = Vf(xt) V2 f (%) "'V f ().
(b) If M(x¢) > ,B%’ then set n; = 3, else set n; = 1.
(c) Set xy11 =% — V2 f(x:) IV f(x¢)

3. Output xp

The standard Newton’s method uses no step sizes (i.e. 7y = 1 for all . However, this can be

shown to converge only when xg is very close to the optimal point x*. To fix this issue we add a

step size in the above algorithm. This step size is determined based on the value of the so-called
4

Newton decrement, i.e. A(x¢) = Vf(x)TV2f(x) 'V f(x). If A(x) > el (definitions of

a, 3,7 to follow), then we set n = %, else we set n; = 1.

To analyze the algorithm, we need to make the following assumptions.

1. f is a-strongly convex and [-smooth.

2. V2f is v-Lipschitz, i.e.,
<yfx-x|

| V2560 = V2 £ ()

The matrix norm on the LHS is the spectral norm.




1. Analysis

By (B-smoothness,
Fxen) < Fxe) + 9760 (-m V27 00)V Fx0)) + S [ 920 0 1) |
= f(x¢) =V f(xe) TV (%) TV f () + Bntvf(xt) V2 (%) 2V (1)

< 7o) — VA x) V) ) + %m V70 TV S x0) VS ()

= J0) — mAG) + LA
where A(x;) £ Vf(x¢) ' V2f(x¢) "1V f(x;) and the last inequality follows from V2f(x;)~! < 11

due to a-sc. By choosing n; = %, we have

f(xt1) < f(xe) — ﬁ)\(xﬂ (1)
In addition,
2
a
Axi) = Vf(x0) 'V f(x0) 7'V f () 5 HVf xi) ||? > 7
where the first inequality uses V2 f(x;)~! = lI due to f-smoothness and the other inequality

follows from HVf(xt)H = HVf(Xt Vix H > af|x¢ — x* || due to a-sc.

e =% (2)

Depending on the value of A(x¢), the analysis of the algorithm factors neatly into two cases. In
the first case, when the iterates x; are far from the optimal point x*, then A(x;) is large (at
least 5‘42) and then we set 1 = % This is called the damped Newton phase of the algorithm
since the Newton step V2f(x;) 'V f(x;) is damped by a factor of % before doing the update.
We will show in the analysis that the damped Newton phase lasts for only a constant number
of steps. Then, x; becomes close enough to x*, at which point A(x;) becomes small enough so
that n; = 1. This is called the quadratically convergent phase since at this points the algorithm
converges doubly exponentially fast to the optimum point: i.e. in order to reach e suboptimality,

we need only O(log(log(2))) steps in this phase. The detailed analysis follows.

«

1. Damped Newton phase. If A\(x;) > 5‘—;2, we set n; = 5.

By Equation (1),
5

f(xt+1) < fxe) — %272

Thus, the function value reduces by a constant amount for each iteration in this

2892 (£ (x0) ~F ("))

045
) W?
phase. Thus, the number of iterations in this phase is bounded by

Typically, we have a finite lower bound on f(x*) (generally, this lower bound is just 0) so

this bound on the number of iterations in this phase of the algorithm is just a constant.

2. Quadratically convergent phase. If A\(x;) < Ba—;;, we set ny = 1.
By Equation (2),

e~ < 2.
Y



Notice that
Xip1 — X* =% — X — V(%) V(%)

= V2000 [V 0 0— x) - V)

— v2f(xt)—1

1
V2 f(x) (% — x*) — / V2 (x* +u(xy — x*)) (x¢ — X*)du]
u=0

= V2 f(x)! /1

[VQf(xt) — V2 F(x* +u(x — x*))} (x¢ —x*)du
u=0
The penultimate equality follows using V f(x¢) = fu1:0 V2 f(x* +u(x; —x*))(x¢ —x*)du by

the fundamental theorem of calculus. This in turn is based on the fact that YL (x*"'dqi(xt_x*))] =

V2 f(x* + u(x; — x*))(x¢ — x*) by the chain rule. Now we can upper bound | 2,41 — x* ||,
by using the Cauchy-Schwarz inequality, the sub-multiplicativity of the spectral norm of

matrices, and subadditivity of the £ norm on the RHS as follows:

%041 — x| < H V2 f(x;) " H % — x* | /1:0 H V2 f(x;) — V2f(x* + u(x; — x*)) H du

IN

1 1
th—x*H/ ')/th—(x*—i—u(xt—x*)Hdu
« u=0

_ ! 1 —w)du | ||x —x* |7
() e

g £ |2
= —||xt—x
iy -
where the second inequality follows from V?f(x;)™' < 1 and Assumption 2.

Now, let tp be the first time step at which A\(xy,) < 3"—;. By the analysis of the damped
26272(f(><g)*f(><*))
[0

Newton phase, we have ¢y < . We have |x;, —x*|| < £. By a simple

induction using the analysis above, we can show that for any s > 0, we have
o /1\%1
o -x1< 2 (3)
Thus, to reach a point x; such that ||x; —x*|| < €, we need log, (logQ(%)) iterations in this
phase

So overall, we need at most

2292 (f (x0) — f(x*)) ( <2a>>
+ logy [ logy [ —
ve

ad

iterations of Newton’s algorithm. This convergence rate is significantly faster than any variant

of gradient descent we have studied in class.
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