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SCRIBE

5
Properties of Convex Functions

1. Convexity, Strong Convexity and Smoothness

We start with redefining strong convexity and smoothness that were discussed in the previous class.

Definition 5.1 (Strong Convexity) A function f : Rd → R is said to be α-strongly convex for some

α > 0 if and only if ∀x ∈ Rd, there exists a subgradient g of f at x such that for any y ∈ Rd, we

have

f(y) ≥ f(x) +∇gT(y − x) + 1

2
α ‖x− y ‖22

For example, consider the function f : Rd → R where f(x) = ‖x ‖22 = 〈x, x〉. The gradient is given

by ∇f(x) = 2x. Then, we have

f(y)− f(x)−∇f(x)T(y − x) = ‖ y ‖22 − ‖x ‖
2
2 − 2xT(y − x)

= ‖x ‖22 + ‖ y ‖
2
2 − 2 〈x, y〉

= ‖ y − x ‖22
This suggests that the strong convexity constant α = 2. In fact f is α-strongly convex for any

α ∈ (0, 2].

Strong convexity ensures that the function remains above a paraboloid defined at any point x with

the two curves touching at x.

Definition 5.2 (Smoothness) A function f : Rd → R is said to be β-smooth for some β > 0 if and

only if ∀x, y ∈ Rd, we have

f(y) ≤ f(x) +∇f(x)T(y − x) + 1

2
β ‖x− y ‖22

Essentially β-smoothness ensures that the function remains below some paraboloid defined at any

point x with the two curves touching at x.

Note A function need not be convex to be β-smooth i.e. even non-convex functions can be smooth.

For non-convex functions, the definition of β-smoothness needs to be amended to the following:
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∀x, y ∈ Rd, we have

|f(y)− (f(x) +∇f(x)T(y − x))| ≤ 1

2
β ‖x− y ‖22

If a function is smooth, then it is necessarily differentiable everywhere.

For example, f(x) = ‖x ‖22 is β-smooth where β ≥ 2.

Exercise 5.1 If a function f : Rd → R is both α-strongly convex and β-strongly smooth with α = β

then prove that the form of f is given as

f(x) =
1

2
α ‖x− a ‖2 + 〈b, x〉+ c

It is often difficult to analytically tell if a function is strongly convex or smooth. The following

theorem, however, offers a simple condition that implies strong convexity or smoothness for twice

differentiable functions.

Theorem 5.1 Suppose a function f : Rd → R is twice differentiable at all points x ∈ Rd , then

(i) if ∀x ∈ Rd, ∇2f(x) < αI, then f is α-strongly convex

(ii) if ∀x ∈ Rd, −βI 4 ∇2f(x) 4 βI, then f is β-smooth.

Proof. Using Taylor’s theorem, we have

f(y) = f(x) +∇f(x)T(y − x) + 1

2
(y − x)T∇2f(γ)(y − x)

where γ ∈ [x, y ]

(i) If ∇2f(γ) < αI, then we have

(y − x)T∇2f(γ)(y − x) ≥ (y − x)TαI(y − x)

= α ‖ y − x ‖2

Plugging this in the taylor’s expansion we wrote above, we have

f(y) ≥ f(x) +∇f(x)T(y − x) + 1

2
α ‖x− y ‖22

(ii) If −βI 4 ∇2f(γ) 4 βI, then we have

(y − x)T∇2f(γ)(y − x) ≤ (y − x)TβI(y − x)

= β ‖ y − x ‖2

Plugging this in the Taylor’s expansion we wrote above, we have

f(y) ≤ f(x) +∇f(x)T(y − x) + 1

2
β ‖x− y ‖22

Similarly one can prove that

f(y) ≥ f(x) +∇f(x)T(y − x)− 1

2
β ‖x− y ‖22 .
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These two inequalities imply that the function is β smooth.

Theorem 5.2 Let f : Rd → R be a convex function then if x is a local minimum of f , then x is a

global minimum.

Proof. Suppose if there is some y ∈ Rd such that f(y) < f(x). From convexity of f , we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

f(x)− (λf(x) + (1− λ)f(y)) ≤ f(x)− f(λx+ (1− λ)y)

=⇒ (1− λ)(f(x)− f(y)) ≤ f(x)− f(λx+ (1− λ)y)

The LHS is greater than 0 for λ < 1 since f(y) < f(x), whereas the RHS, for λ close to 1, is

non-negative since x is a local minimum. Therefore we obtain a contradiction.

In the next lecture we discuss gradient descent as a solver for optimization problems and we use the

theorems discussed above when analysing convergence of descent methods for convex functions.
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