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PROPERTIES OF CONVEX FUNCTIONS

1. Convexity, Strong Convexity and Smoothness

We start with redefining strong convexity and smoothness that were discussed in the previous class.

Definition 5.1 (Strong Convexity) A function f : R? — R is said to be a-strongly convex for some
a > 0 if and only if Vo € R, there exists a subgradient ¢ of f at z such that for any y € R?, we

have

f) > fl@)+ V" y o)+ gallz—yl3

For example, consider the function f : R? — R where f(z) = ||z |3 = (x, z). The gradient is given
by V f(xz) = 2z. Then, we have

fly) = f(@) = V@) (y—=2) = |yl -zl —22"(y - x)
= lzl3+yl5 -2z, v)
= ly—zl;
This suggests that the strong convexity constant a = 2. In fact f is a-strongly convex for any
a € (0,2].
Strong convexity ensures that the function remains above a paraboloid defined at any point  with

the two curves touching at x.

Definition 5.2 (Smoothness) A function f : R? — R is said to be -smooth for some § > 0 if and
only if Vz,y € R?, we have

1
fy) < @)+ V@) (v —2) +58x -yl
Essentially S-smoothness ensures that the function remains below some paraboloid defined at any

point x with the two curves touching at x.

Note A function need not be convex to be -smooth i.e. even non-convex functions can be smooth.

For non-convex functions, the definition of S-smoothness needs to be amended to the following:



Vz,y € R? we have

F) — (@) + V5 @) (g~ )| < 58]z~ 3

If a function is smooth, then it is necessarily differentiable everywhere.

For example, f(z) = ||z 3 is S-smooth where § > 2.

Exercise 5.1 If a function f : R — R is both a-strongly convex and S-strongly smooth with o =

then prove that the form of f is given as

flz) = %aHx—aHz—i-(b, x)+c¢

It is often difficult to analytically tell if a function is strongly convex or smooth. The following
theorem, however, offers a simple condition that implies strong convexity or smoothness for twice

differentiable functions.

Theorem 5.1 Suppose a function f : R? — R is twice differentiable at all points z € R? | then

(i) if Vo € RY, V2f(z) = ol, then f is a-strongly convex

(ii) if Vo € RY, —B1 < V2f(2) < BI, then f is B-smooth.

Proof. Using Taylor’s theorem, we have

fly) = f(@)+ V@) (y—2)+ %(y —2)"'V2f(9)(y — x)
where vy € [z,y]

(i) If V2f(~) = al, then we have
(y = 2)" VA (7)(y —2) > (y — ) "al(y — )
= aly—z|?
Plugging this in the taylor’s expansion we wrote above, we have
fly) > F@)+ Vi@ (y—a) + sz~
(ii) If —BI < V2f(v) < BI, then we have
(y = 2)" V) —2) < (y — 2)"Bl(y — @)
= Blly -
Plugging this in the Taylor’s expansion we wrote above, we have

fly) < F@)+ Vi@ y—a)+ 582~y

Similarly one can prove that

Py > F@)+ Vi@ ly—a) — 58z 3.



These two inequalities imply that the function is 8 smooth.

O

Theorem 5.2 Let f : RY — R be a convex function then if z is a local minimum of f, then z is a

global minimum.

Proof. Suppose if there is some y € R? such that f(y) < f(x). From convexity of f, we have

)-
fOz+ 1 =Ny) < M)+ (1 =-N)f(y)
f@) = (Af(2) + A =Nfy) < fl@) = fQz+ (1= Ny)

= (L=XN(f(x) = f(y) < fl@) = fQz+ (1= N)y)
The LHS is greater than 0 for A < 1 since f(y) < f(x), whereas the RHS, for A close to 1, is

non-negative since x is a local minimum. Therefore we obtain a contradiction. O

In the next lecture we discuss gradient descent as a solver for optimization problems and we use the

theorems discussed above when analysing convergence of descent methods for convex functions.
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