
Columbia University in the City of New York

Optimization Methods for Machine Learning

Instructors: Satyen Kale

Authors: Chao Qin

Email: cq2199@columbia.edu

SCRIBE

6
Gradient Descent

1. Convexity

This section covers a short recap of the convex optimization problem and introduces some relevant

results.

Definition 6.1 (Convex optimization problem) A convex optimization problem is an optimization

problem of the form

min f(x)

s.t. x ∈ K

where f : Rd → R is convex and K is a convex set of Rd.

Theorem 6.1 Let K = Rd and x∗ be a minimizer of f on Rd. If f is differentiable at x∗, then

∇f(x∗) = 0.

The following is the proof sketch of this result.

Proof. For and x and δ,

f(x+ δ) ≈ f(x) +∇f(x)>δ.

Since x∗ is a minimzer, we have ∇f(x∗)>δ ≥ 0 for small δ ∈ Rd. If we choose δ = −ε∇f(x∗)>, for

some small ε > 0 so that the approximation above is valid, we have −ε∇f(x∗)>∇f(x∗) ≥ 0, which

leads to ∇f(x∗) = 0.

In the above result, K = Rd. In fact, we have the following result for general convex set K.

Theorem 6.2 Let f be differentiable at x∗ ∈ K. If x∗ is a minimizer of f on K, then

∇f(x∗)>(y − x∗) ≥ 0, ∀y ∈ K. (1)

Theorem 6.1 is a special case of Theorem 6.2. If K = Rd, we can take y = x∗ −∇f(x∗), and then

Equation (1) implies ∇f(x∗) = 0, which is Theorem 6.1. Theorem 6.2 can be proved similarly to

Theorem 6.1. The following result shows that the inverse of Theorem 6.2 is also true:

1

Theorem 6.3 Let f be differentiable at x∗ ∈ K. If Equation (1) holds, then x∗ is a minimizer.

2. Gradient Descent

In this section, we first introduce the oracle complexity and gradient descent algorithm, and then

we analyze the complexity of this algorithm.

The following oracles are widely seen in the literature.

• Zero-order oracle: given x, returns f(x)

• First-order oracle: given x, returns ∇f(x)

• Second-order oracle: given x, returns ∇2f(x)

Based on the definition of first-order oracle, we can define the first-order complexity of an optimiza-

tion algorithm.

Definition 6.2 (First-Order Complexity) First-order oracle of an optimization algorithm is the number

of calls it needs to make a first-order oracle to compute x s.t.

f(x) ≤ min
x′∈K

f(x′) + ε

for a given ε > 0.

Typical result could be O(1/ε2), O(1/ε), O(log
(
1/ε
)
).

Now we introduce the gradient descent algorithm. For simplicity, we assume K = Rd.

1 Param: η > 0, which is the stepsize;

2 Init: x0 ∈ K arbitrary;

3 for t = 0, 1, 2, . . . do

4 xt+1 = xt − η∇f(xt)

5 end

6 return xT (or some combination of x0, . . . , xT)
Algorithm 1: Gradient Descent

It is easy to see that the first order complexity of gradient descent is T . Next we provide the analysis

of this algorithm. We consider the potential function ‖xt − x∗‖2. We have

‖xt+1 − x∗‖2 = ‖xt − η∇f(xt)− x∗‖2 = ‖xt − x∗‖2 + η2‖∇f(xt)‖2 − 2η∇f(xt)
>(xt − x∗),

which leads to

∇f(xt)
>(xt − x∗) =

1

2η

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

)
+
η

2
‖∇f(xt)‖2.

2

By convexity, we have

f(xt)− f(x∗) ≤ 1

2η

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

)
+
η

2
‖∇f(xt)‖2.

Taking the summation of t from 0 to T − 1, we have
T−1∑
t=0

f(xt)− f(x∗) ≤ 1

2η

(
‖x0 − x∗‖2 − ‖xT − x∗‖2

)
+
η

2

T−1∑
t=0

‖∇f(xt)‖2.

At this point, to get a meaningful bound, we need to control
∑T−1

t=0 ‖∇f(xt)‖2 somehow. One way

to do this is to assume that f is L-Lipschitz for some L ≥ 0, i.e. for all x, y ∈ Rd, we have

|f(x)− f(y)| ≤ L‖x− y‖. This turns out to be equivalent to the following:

‖∇f(x)‖ ≤ L, ∀x.

Under this assumption,

RHS ≤ 1

2η
‖x0 − x∗‖2 +

η

2
L2T.

By Jensen’s inequality,

LHS =

T−1∑
t=0

f(xt)− f(x∗) ≥ T
(
f(x̄)− f(x∗)

)
where x̄ = 1

T

∑T−1
t=0 xt. Combining the above two inequalities, we have

f(x̄) ≤ f(x∗) +
1

2ηT
‖x0 − x∗‖2 +

η

2
L2.

We pick

η =
‖x0 − x∗‖
L
√
T

,

and then

f(x̄) ≤ f(x∗) +
L‖x0 − x∗‖√

T
.

Thus to achieve a given sub-optimality gap ε > 0, we need
L‖x0 − x∗‖√

T
≤ ε =⇒ T ≥ L2‖x0 − x∗‖2

ε2
.

In fact, x∗ is unknown, and thus the η that we picked is unknown. Usually, people make the

assumption that ‖x∗‖ ≤ D. Then we have

‖x0 − x∗‖ ≤ ‖x0‖+D

by triangle inequality. Now we can pick

η =
‖x0‖+D

L
√
T

,

and correspondingly,

T ≥
L2
(
‖x0‖+D

)2
ε2

.

A good choice for x0 is x0 = 0, in which case the above bound becomes

T ≥ L2D2

ε2
.

3

	Convexity
	Gradient Descent

