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Gradient Descent

1. Gradient Descent

We analyze gradient descent assuming different conditions on f .

1.1 f is Lipschitz with constant L

Definition 1. f is Lipschitz with constant L if

|f(x)− f(y)| ≤ L||x− y|| (1.1.1)

which is equivalent to

||∇f(x)|| ≤ L (1.1.2)

Recall the analysis of gradient descent: we have
T−1∑
t=0

f(xt)− f(x∗) ≤ 1

2η
(||x0 − x∗||2 − ||xT − x∗||2) +

η

2

T−1∑
t=0

||∇f(xt)||2

≤ 1

2η
(||x0 − x∗||2) +

η

2
TL2

≤
√
TL||x0 − x∗||

(1.1.3)

where the last equality holds by setting η = ||x0−x∗||√
TL

.

By convexity of f , we have

1

T

T−1∑
t=0

f(xt) ≥ f(
1

T

T−1∑
t=0

xt) (1.1.4)

which implies that

f(x̄)− f(x∗) ≤ ||x0 − x
∗||L√

T
(1.1.5)

Then if we let T ≥ ||x0−x∗||2L2

ε2 , we have that

f(x̄)− f(x∗) ≤ ||x0 − x
∗||L√

T

≤ ε
(1.1.6)
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1.2 f is β-smooth

We now give a tighter analysis in the case f is β-smooth. From β-smoothness we have that

f(y) ≤ f(x) +∇f(x)T (y − x) +
β

2
||y − x||2 (1.2.1)

If we let x′ = x− 1
β∇f(x), then

f(x′) ≤ f(x)− 1

2β
||∇f(x)||2 (1.2.2)

Reorganizing we have
1

2β
||∇f(x)||2 ≤ f(x)− f(x′) (1.2.3)

Now suppose we run gradient descent with η = 1
β . Using inequality (1.2.3) with x = xt and

x′ = xt+1, we get

f(xt)− f(x∗) ≤ 1

2η
(||xt − x∗||2 − ||xt+1 − x∗||2) + f(xt)− f(xt+1) (1.2.4)

Then we have
T−1∑
t=0

f(xt+1)− f(x∗) ≤ 1

2η
(||x0 − x∗||2 − ||xT − x∗||2)

≤ 1

2η
||x0 − x∗||2

(1.2.5)

Finally, replacing back η = 1
β and dividing on both sides by T ⇒

1

T
[

T−1∑
t=0

f(xt+1)− f(x∗)] ≤ β

2
(||x0 − x∗||2/T ) (1.2.6)

⇒

f(
1

T

T−1∑
0

xt+1)− f(x∗) ≤ β

2
(||x0 − x∗||2/T ) (1.2.7)

by Jensen’s inequality since f is convex.

We can also prove a sub-optimality bound for the last iterate xT . Note that inequality (1.2.2)
implies that f monotonically decreases along the sequence x0, x1, x2, . . ., i.e.

f(x0) ≥ f(x1) ≥ f(x2) ≥ · · · ≥ f(xT ).

Thus,

f(xT )− f(x∗) ≤ 1

T
[

T−1∑
t=0

f(xt+1)− f(x∗)] ≤ β

2

||x0 − x∗||2

T
(1.2.8)

Then if we set

T ≥ β

2
· ||x0 − x

∗||2

ε
(1.2.9)

we can achieve ε-sub-optimality.
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1.3 f is α-strongly convex and β-smooth

Now suppose f is α-strongly convex and β-smooth. Suppose we run gradient descent with step
size η = 1

β .

From the definitions, we have

f(x) +∇f(x)T (y − x) +
α

2
||x− y||2 ≤ f(y) ≤ f(x) +∇f(x)T (y − x) +

β

2
||y − x||2 (1.3.1)

if we set y = x∗ and x = xt, we have

f(xt) +∇f(xt)
T (x∗ − xt) +

α

2
||xt − x∗||2 ≤f(x∗) (1.3.2)

Plugging in the bound from inequality (1.3.2) into the basic gradient descent analysis, we have

f(xt)− f(x∗) ≤ 1

2η
(||xt − x∗||2 − ||xt+1 − x∗||2) +

η

2
||∇f(xt)||2 −

α

2
||xt − x∗||2

≤ 1

2η
(||xt − x∗||2 − ||xt+1 − x∗||2) + (f(xt)− f(xt+1))− α

2
||xt − x∗||2

(1.3.3)

The second inequality above follows from the fact that η = 1
β and inequality (1.2.3) exactly as

in the gradient descent analysis for β-smooth f .

Thus, we have

0 ≤ f(xt+1)− f(x∗) ≤ 1

2η
(||xt − x∗||2 − ||xt+1 − x∗||2)− α

2
||xt − x∗||2 (1.3.4)

So,

||xt+1 − x∗||2 ≤ (1− ηα)||xt − x∗||2 (1.3.5)

Using η = 1
β , we have that

||xt+1 − x∗||2 ≤ (1− α

β
)||xt − x∗||2 (1.3.6)

⇒

||xT − x∗||2 ≤ (1− α

β
)T ||x0 − x∗||2 (1.3.7)

Since f is β smooth, we have

f(xT )− f(x∗) ≤ ∇f(x∗)T (xT − x∗) +
β

2
||xT − x∗||2 (1.3.8)

=
β

2
||xT − x∗||2 (1.3.9)

≤ β

2
· (1− α

β
)T ||x0 − x∗||2 (1.3.10)

The equality above uses the fact that ∇f(x∗) = 0. Thus, after

T =
log
(

2ε
D2β

)
−log

(
1− α

β

)
≈ β

α
log

(
βD2

2ε

)
, since log (1− x) ≈ −x

(1.3.11)

iterations we can achieve ε-sub-optimality.
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