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GRADIENT DESCENT

1. Gradient Descent

We analyze gradient descent assuming different conditions on f.

1.1 fis Lipschitz with constant L

Definition 1. f is Lipschitz with constant L if
|f(@) = f(y)| < L[z -y

which is equivalent to

IVf(@)l] < L

Recall the analysis of gradient descent: we have

T-1 T-1
* 1 * * 77
> fw) = F@") < o (lao =" = [lor = 2" 1) + 5 D IV F (o)l
n
t=0 t=0
1 U
< — —2*|*) + 2TL?
< go(llzo =" IP) + 3
< VTL|jzg — z*|]

_ llwo—a]]

where the last equality holds by setting 7 VT

By convexity of f, we have
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which implies that
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1.2 fis g-smooth

We now give a tighter analysis in the case f is S-smooth. From [S-smoothness we have that

F(w) < 1) + VI @)~ 2) + Sy~ al (121)
If we let &' =2 — %Vf(x), then

@) < fa) - %HW(@HQ (12.2)

Reorganizing we have

1

*BHVJ"’(QJ)H2 < f(z) - f(@) (1.2.3)
Now suppose we run gradient descent with n = % Using inequality (1.2.3) with z = z; and

2’ = x441, we get
1

flze) = f(@7) < %(th = 2|? = |lzesr — 2*|P) + (&) = f(="T) (1.2.4)

Then we have
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by Jensen’s inequality since f is convex.

We can also prove a sub-optimality bound for the last iterate zp. Note that inequality (1.2.2)

implies that f monotonically decreases along the sequence xg, 1, z2,..., i.e.

f(@o) = f(21) = flwe) = - = flar).

Thus,
For) = £(a*) < 213 Flann) - flory < Bl (12.8)
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Then if we set
7 B e =2 (1.2.9)

we can achieve e-sub-optimality.



1.3 fis a-strongly convex and g-smooth

Now suppose f is a-strongly convex and S-smooth. Suppose we run gradient descent with step

size n = %

From the definitions, we have

F() + V1@ @~ )+ Sl — 9l < J) < 1)+ V@) (- 2) + Sy —alP (131)

if we set y = 2* and = x¢, we have

fl@) + Vf(w)" (2" —z) + %th —a*|]* <f(z*) (1.3.2)

Plugging in the bound from inequality (1.3.2) into the basic gradient descent analysis, we have
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The second inequality above follows from the fact that n = % and inequality (1.2.3) exactly as

in the gradient descent analysis for S-smooth f.

Thus, we have

0 < f(zig) — f2") < %(th = 2|* = ||z — 2|) - %let —a”||? (1.3.4)
So,
llzers — 2% < (1 = nayllee — 2*|? (1.3.5)
Using n = %, we have that
2241 — 27|* < (1—%)”%—3«"*”2 (1.3.6)
=
|z — 2*[]* < (1—%)Tll%‘o—%*ll2 (1.3.7)
Since f is 8 smooth, we have
flar) — f(z) < V@) (ar — %) + §||xT — z*||? (1.3.8)
= §\|xT_a;*||2 (1.3.9)
<5 (1= 5 o — 2| (13.10)

_log( - ) (1.3.11)
~ élog <5D2> , since log (1 —z) = —x

iterations we can achieve e-sub-optimality.
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