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PROJECTED GRADIENT DESCENT-CONTINUED

1. Projected Gradient Descent

1.1 Recap for algorithm

Algorithm 1: Projected Gradient Descent

fort=0,1,2... do
Yt+1 = Tt — TIVf(IKt)
rir1 = Uy (Y1)
end

return some combination of xg, ..., zp

1.2 Example of projections

If K = {z € R| |[z}» < R}, then,

y,if [lyll2 < R
k(y) = (1..1)

Ry -
it yll < R

If K = {z € R| ||z]|o < R}, then,
Y, if [yl < R
(y) = $ R,if ||y||oc > R (1.2)
—R,if [[y|lec < —R

1.3 Project Gradient Descent for a-strongly convex and L-Lipschitz f

We will use a version of projected gradient descent with different step sizes used in different
iterations. In iteration ¢, we use step size ;. lL.e., the update in iteration ¢ is xy41 = g (z; —

neVif(zy)). Defining yi+1 = ¢ — n:Vef(x¢), we have, as in previous lectures:

lzer1 — 21 < lyesr — 2P = [Jee — 2|2 + 057 ||V (@0)|[P = 200V f ) (w0 —2%)  (1..3)
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Notice that here we cannot follow the previous ways to remove the term of x;, x411 by simple

1
Ne+1 "

summing up LHS and RHS. However we can still make the RHS telescope by setting %—a =

One choice of n; which ensures this is 7 = cx(t+1) Then
T—1 -1, 1
fla) = f(@") = 2(2(* —a) =g e - P+
t=0 =1 <M Mt~
(1..5)
L1 2 1 2 - Mt 2
“(——a)||lro—= zr—x||*+ ) —L
3y M =1 = g ller I+ 30
Notice that 77—10 — a = 0. Dropping the non-positive term _277T - ||lzr — z \|2 and using Jensen’s
inequality, we have
=
F(3 o @) = fl@*) <
T~ 2a(t+1) t+1 (1..6)
L? In(T)+1
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